Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electric quadrupole second-harmonic generation revealing dual magnetic orders in a magnetic Weyl semimetal

Abstract

Broken symmetries and electronic topology are well manifested together in the second-order nonlinear optical responses from topologically non-trivial materials. Although second-order nonlinear optical effects from the electric dipole contribution have been extensively explored in polar Weyl semimetals with broken spatial-inversion symmetry, they are rarely studied in centrosymmetric magnetic Weyl semimetals with broken time-reversal symmetry due to the complete suppression of the electric dipole contribution. Here we report the experimental demonstration of optical second-harmonic generation (SHG) in a magnetic Weyl semimetal Co3Sn2S2 from the electric quadrupole contribution. By tracking the temperature dependence of the rotational anisotropy of SHG, we capture two magnetic phase transitions, with both SHG intensity increasing and its rotational anisotropy pattern rotating at TC,1 = 175 K and TC,2 = 120 K subsequently. The fitted critical exponents for the SHG intensity and rotational anisotropy orientation near TC,1 and TC,2 suggest that the magnetic phase at TC,1 is a three-dimensional Ising-type out-of-plane ferromagnetism, whereas the other at TC,2 is a three-dimensional XY-type all-in–all-out in-plane antiferromagnetism. Our results show the success of the detection and exploration of electric quadrupole SHG in a centrosymmetric magnetic Weyl semimetal and hence open the pathway towards future investigations into its association with band topology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Room-temperature linear and SHG RA of Co3Sn2S2.
Fig. 2: Temperature dependence of linear and SHG responses of Co3Sn2S2.
Fig. 3: Broken mirror symmetries in the magnetic phases.
Fig. 4: Critical behaviours of the two magnetic phase transitions.

Similar content being viewed by others

Data availability

All data that support the findings of this work are shown in the main text and Supplementary Information. Source data are provided with this paper.

References

  1. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    Article  Google Scholar 

  2. Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

    Article  ADS  Google Scholar 

  3. Sirica, N. et al. Photocurrent-driven transient symmetry breaking in the Weyl semimetal TaAs. Nat. Mater. 21, 62–66 (2022).

    Article  ADS  Google Scholar 

  4. Wu, L. et al. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13, 350–355 (2017).

    Article  Google Scholar 

  5. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    Article  ADS  Google Scholar 

  6. Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    Article  ADS  Google Scholar 

  7. Sirica, N. et al. Tracking ultrafast photocurrents in the Weyl semimetal TaAs using THz emission spectroscopy. Phys. Rev. Lett. 122, 197401 (2019).

    Article  ADS  Google Scholar 

  8. Luo, L. et al. A light-induced phononic symmetry switch and giant dissipationless topological photocurrent in ZrTe5. Nat. Mater. 20, 329–334 (2021).

    Article  ADS  Google Scholar 

  9. Patankar, S. et al. Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98, 165113 (2018).

    Article  ADS  Google Scholar 

  10. Gao, Y. et al. Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat. Commun. 11, 720 (2020).

    Article  ADS  Google Scholar 

  11. Lu, B. et al. Second-harmonic generation in the topological multifold semimetal RhSi. Phys. Rev. Res. 4, L022022 (2022).

    Article  Google Scholar 

  12. Rees, D. et al. Direct measurement of helicoid surface states in RhSi using nonlinear optics. Phys. Rev. Lett. 127, 157405 (2021).

    Article  ADS  Google Scholar 

  13. Wang, H., Tang, X., Xu, H., Li, J. & Qian, X. Generalized Wilson loop method for nonlinear light-matter interaction. npj Quantum Mater. 7, 61 (2022).

    Article  ADS  Google Scholar 

  14. Wang, H. & Qian, X. Electrically and magnetically switchable nonlinear photocurrent in РТ-symmetric magnetic topological quantum materials. npj Comput. Mater. 6, 199 (2020).

    Article  ADS  Google Scholar 

  15. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    Article  ADS  Google Scholar 

  16. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  Google Scholar 

  17. Liu, D. F. et al. Magnetic Weyl semimetal phase in a kagomé crystal. Science 365, 1282–1285 (2019).

    Article  ADS  Google Scholar 

  18. Morali, N. et al. Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co3Sn2S2. Science 365, 1286–1291 (2019).

    Article  ADS  Google Scholar 

  19. Ron, A., Zoghlin, E., Balents, L., Wilson, S. D. & Hsieh, D. Dimensional crossover in a layered ferromagnet detected by spin correlation driven distortions. Nat. Commun. 10, 1654 (2019).

    Article  ADS  Google Scholar 

  20. Torre, Adela et al. Mirror symmetry breaking in a model insulating cuprate. Nat. Phys. 17, 777–781 (2021).

    Article  Google Scholar 

  21. Torchinsky, D. H. et al. Structural distortion-induced magnetoelastic locking in Sr2IrO4 revealed through nonlinear optical harmonic generation. Phys. Rev. Lett. 114, 096404 (2015).

    Article  ADS  Google Scholar 

  22. Jin, W. et al. Observation of a ferro-rotational order coupled with second-order nonlinear optical fields. Nat. Phys. 16, 42–46 (2020).

    Article  Google Scholar 

  23. Luo, X. et al. Ultrafast modulations and detection of a ferro-rotational charge density wave using time-resolved electric quadrupole second harmonic generation. Phys. Rev. Lett. 127, 126401 (2021).

    Article  ADS  Google Scholar 

  24. Fichera, B. T. et al. Second harmonic generation as a probe of broken mirror symmetry. Phys. Rev. B 101, 241106 (2020).

    Article  ADS  Google Scholar 

  25. Meier, D. et al. Second harmonic generation on incommensurate structures: the case of multiferroic MnWO4. Phys. Rev. B 82, 155112 (2010).

    Article  ADS  Google Scholar 

  26. Soh, J.-R. et al. Magnetic structure of the topological semimetal Co3Sn2S2. Phys. Rev. B 105, 094435 (2022).

    Article  ADS  Google Scholar 

  27. Lachman, E. et al. Exchange biased anomalous Hall effect driven by frustration in a magnetic kagome lattice. Nat. Commun. 11, 560 (2020).

    Article  ADS  Google Scholar 

  28. Guguchia, Z. et al. Tunable anomalous Hall conductivity through volume-wise magnetic competition in a topological kagome magnet. Nat. Commun. 11, 559 (2020).

    Article  ADS  Google Scholar 

  29. Zhang, Q. et al. Unusual exchange couplings and intermediate temperature Weyl state in Co3Sn2S2. Phys. Rev. Lett. 127, 117201 (2021).

    Article  ADS  Google Scholar 

  30. Lee, C. et al. Observation of a phase transition within the domain walls of ferromagnetic Co3Sn2S2. Nat. Commun. 13, 3000 (2022).

    Article  ADS  Google Scholar 

  31. Sugawara, A. et al. Magnetic domain structure within half-metallic ferromagnetic kagome compound Co3Sn2S2. Phys. Rev. Mater. 3, 104421 (2019).

    Article  Google Scholar 

  32. Zhao, L. et al. A global inversion-symmetry-broken phase inside the pseudogap region of YBa2Cu3Oy. Nat. Phys. 13, 250–254 (2017).

    Article  Google Scholar 

  33. Yang, R. et al. Magnetization-induced band shift in ferromagnetic Weyl semimetal Co3Sn2S2. Phys. Rev. Lett. 124, 077403 (2020).

    Article  ADS  Google Scholar 

  34. Fiebig, M., Pavlov, V. V. & Pisarev, R. V. Second-harmonic generation as a tool for studying electronic and magnetic structures of crystals: review. J. Opt. Soc. Am. B 22, 96–118 (2005).

    Article  Google Scholar 

  35. Liu, Y. & Petrovic, C. Critical behavior of the quasi-two-dimensional weak itinerant ferromagnet trigonal chromium telluride Cr0.62Te. Phys. Rev. B 96, 134410 (2017).

    Article  ADS  Google Scholar 

  36. Kassem, M. A., Tabata, Y., Waki, T. & Nakamura, H. Low-field anomalous magnetic phase in the kagome-lattice shandite Co3Sn2S2. Phys. Rev. B 96, 014429 (2017).

    Article  ADS  Google Scholar 

  37. Torchinsky, D. H., Chu, H., Qi, T., Cao, G. & Hsieh, D. A low temperature nonlinear optical rotational anisotropy spectrometer for the determination of crystallographic and electronic symmetries. Rev. Sci. Instrum. 85, 083102 (2014).

    Article  ADS  Google Scholar 

  38. Kassem, M. A., Tabata, Y., Waki, T. & Nakamura, H. Single crystal growth and characterization of kagomé-lattice shandites Co3Sn2−InS2. J. Cryst. Growth 426, 208–213 (2015).

    Article  ADS  Google Scholar 

  39. Canfield, P. C., Kong, T., Kaluarachchi, U. S. & Jo, N. H. Use of frit-disc crucibles for routine and exploratory solution growth of single crystalline samples. Philos. Mag. 96, 84–92 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge valuable discussions with I. Mazin and L. Li. L.Z. acknowledges support by AFOSR YIP grant no. FA9550-21-1-0065, NSF CAREER grant no. DMR-174774 and Alfred P. Sloan Foundation. K.S. acknowledges support from the Office of Navy Research grant no. N00014-21-1-2770 and the Gordon and Betty Moore Foundation grant no. N031710. D.M. acknowledges support from AFSOR MURI grant FA9550-20-1-0322.

Author information

Authors and Affiliations

Authors

Contributions

Y.A. and L.Z. conceived the project. Y.A. planned and performed the experiment under the advice of L.Z. Y.A. and X.G. performed the point-group symmetry simulation under the guidance of L.Z. R.X., K.Q. and D.M. grew and characterized the samples. Y.A., K.S. and L.Z. analysed the data. Y.A. and L.Z. wrote and revised the manuscript with comments from all authors.

Corresponding author

Correspondence to Liuyan Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Manfred Fiebig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and Sections 1–6.

Source data

Source Data Fig. 1

Room-temperature RA SHG and RA linear reflectivity of Co3Sn2S2 for Fig. 1c.

Source Data Fig. 2

Temperature-dependent SHG and linear reflectivity intensity of Co3Sn2S2 for Fig. 2.

Source Data Fig. 3

Low-temperature RA SHG, low-temperature MCD map and location-dependent RA SHG data for Fig. 3.

Source Data Fig. 4

Temperature-dependent RA SHG and the fitted temperature dependence of the SHG intensity and RA orientation for Fig. 4a–c.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, Y., Guo, X., Xue, R. et al. Electric quadrupole second-harmonic generation revealing dual magnetic orders in a magnetic Weyl semimetal. Nat. Photon. 18, 26–31 (2024). https://doi.org/10.1038/s41566-023-01300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01300-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing