Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Low-loss stable storage of 1.2 Å X-ray pulses in a 14 m Bragg cavity

Abstract

We present an experimental demonstration of a stable, low-loss, large X-ray cavity operating at 1.2 Å wavelength. The cavity consists of four separate high-reflectivity single crystal diamond Bragg mirrors arranged in a rectangular configuration with a round-trip distance of 14.2 m. Femtosecond X-ray pulses from an X-ray free-electron laser were coupled into the cavity via a transmission phase grating. We show that a stable mode can be maintained with the introduction of cavity focusing and measure round-trip efficiencies approaching 88%, or >96% when excluding grating and lens losses, close to the Bragg mirror theoretical performance limit. The direct observation of sustained stable X-ray circulation provides the most direct evidence to date that cavity-based X-ray free-electron lasers and other cavity-based hard X-ray systems are feasible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental schematic of cavity optics and diagnostics.
Fig. 2: Cavity ring-down measurement with intracavity focusing (f = 71 m).
Fig. 3: Transverse beam circulation dynamics.

Similar content being viewed by others

Data availability

The data presented in the figures have been uploaded to Zenodo. Source data are provided with this paper. Additional raw data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940–1949 (1958).

    Article  ADS  Google Scholar 

  2. Madey, J. M. J. Stimulated emission of bremsstrahlung in a periodic magnetic field. J. Appl. Phys. 42, 1906–1913 (1971).

    Article  ADS  Google Scholar 

  3. Deacon, D. A. G. et al. First operation of a free-electron laser. Phys. Rev. Lett. 38, 892–894 (1977).

    Article  ADS  Google Scholar 

  4. Litvinenko, V., Burnham, B., Madey, J. & Wu, Y. Dynamics of the Duke storage ring UV FEL. Nucl. Instrum. 358, 369–373 (1995).

    Article  Google Scholar 

  5. Liss, K.-D. et al. Storage of X-ray photons in a crystal resonator. Nature 404, 371–373 (2000).

    Article  ADS  Google Scholar 

  6. Shvyd'ko, Y. V. et al. X-ray interferometry with microelectronvolt resolution. Phys. Rev. Lett. 90, 013904 1–4 (2003).

    ADS  Google Scholar 

  7. Colella, R. & Luccio, A. Proposal for a free electron laser in the X-ray region. Opt. Commun. 50, 41–44 (1984).

    Article  ADS  Google Scholar 

  8. Kondratenko, A. M. & Saldin, E. L. Generation of coherent radiation by a relativistic electron beam in am undulator. Part. Accel. 10, 207–216 (1980).

    Google Scholar 

  9. Bonifacio, R., Pellegrini, C. & Narducci, L. Collective instabilities and high-gain regime in a free electron laser. Opt. Commun. 50, 373–378 (1984).

    Article  ADS  Google Scholar 

  10. Kim, K., Huang, Z. & Lindberg, R. Synchrotron Radiation and Free-Electron Lasers: Principles of Coherent X-Ray Generation (Cambridge Univ. Press, 2017).

  11. Amann, J. et al. Demonstration of self-seeding in a hard-X-ray free-electron laser. Nat. Photon. 6, 693–698 (2012).

    Article  ADS  Google Scholar 

  12. Inagaki, T. et al. Hard X-ray self-seeding set-up and results at SACLA. in Proc. 36th International Free Electron Laser Conference, TUC01 (eds Chrin, J. et al.) 603–608 (JACoW, 2014).

  13. Lutman, A. A. et al. Demonstration of single-crystal self-seeded two-color X-ray free-electron lasers. Phys. Rev. Lett. 113, 254801 1–5 (2014).

  14. Inoue, I. et al. Generation of narrow-band X-ray free-electron laser via reflection self-seeding. Nat. Photon. 13, 319–322 (2019).

    Article  ADS  Google Scholar 

  15. Nam, I. et al. High-brightness self-seeded X-ray free-electron laser covering the 3.5 keV to 14.6 keV range. Nat. Photon. 15, 435–441 (2021).

    Article  ADS  Google Scholar 

  16. Liu, S. et al. Cascaded hard X-ray self-seeded free-electron laser at MHz-repetition-rate. Preprint at Research Square, v1 https://doi.org/10.21203/rs.3.rs-2487501/v1 (2023).

  17. Huang, Z. & Ruth, R. D. Fully coherent X-ray pulses from a regenerative-amplifier free-electron laser. Phys. Rev. Lett. 96, 144801 1–4 (2006).

    Article  ADS  Google Scholar 

  18. Marcus, G. et al. Refractive guide switching a regenerative amplifier free-electron laser for high peak and average power hard X-rays. Phys. Rev. Lett. 125, 254801 1–6 (2020).

  19. Marcus, G. et al. Regenerative amplification for a hard X-ray free-electron laser. in Proc. of the Free Electron Laser Conference, TUP032 Vol. 39 (eds Decking, W. et al.) 118–121 (JACoW, 2019).

  20. Kim, K.-J. et al. A proposal for an X-ray free-electron laser oscillator with an energy-recovery linac. Phys. Rev. Lett. 100, 244802 1–4 (2008).

  21. Halavanau, A. et al. Population inversion X-ray laser oscillator. Proc. Natl Acad. Sci. USA 117, 15511–15516 (2020).

    Article  ADS  Google Scholar 

  22. Marcus, G. et al. Cavity-based free-electron laser research and development: a joint Argonne National Laboratory and SLAC National Laboratory collaboration. in Proc. of the Free Electron Laser Conference TUD04 (eds Decking, W. et al.) 282–287 (JACoW, 2019).

  23. Rauer, P. et al. Cavity based X-ray free electron laser demonstrator at the European X-ray Free Electron Laser facility. Phys. Rev. Accel. Beams 26, 020701 1–14 (2023).

    Article  ADS  Google Scholar 

  24. Shvyd'ko, Y., Stoupin, S., Blank, V. & Terentyev, S. Near-100% Bragg reflectivity of X-rays. Nat. Photon. 5, 539–542 (2011).

    Article  ADS  Google Scholar 

  25. Sumiya, H., Harano, K. & Tamasaku, K. HPHT synthesis and crystalline quality of large high-quality (001) and (111) diamond crystals. Diam. Relat. Mater. 58, 221–225 (2015).

    Article  ADS  Google Scholar 

  26. Chang, S.-L. et al. Crystal cavity resonance for hard X-rays: a diffraction experiment. Phys. Rev. B 74, 134111 1–7 (2006).

  27. Chollet, M. et al. The X-ray Pump-Probe instrument at the Linac Coherent Light Source. J. Synchrotron. Rad. 22, 503–507 (2015).

    Article  Google Scholar 

  28. Zhu, D. et al. Performance of a beam-multiplexing diamond crystal monochromator at the Linac Coherent Light Source. Rev. Sci. Instrum. 85, 063106 1–7 (2014).

  29. Stoupin, S. et al. All-diamond optical assemblies for a beam-multiplexing X-ray monochromator at the Linac Coherent Light Source. J. Appl. Crystallogr. 47, 1329–1336 (2014).

    Article  Google Scholar 

  30. Li, K. et al. Wavefront preserving and high efficiency diamond grating beam splitter for X-ray free electron laser. Opt. Express 28, 10939–10950 (2020).

    Article  ADS  Google Scholar 

  31. Snigirev, A., Kohn, V., Snigireva, I. & Lengeler, B. A compound refractive lens for focusing high-energy X-rays. Nature 384, 49–51 (1996).

  32. Authier, A. Dynamical Theory of X-ray Diffraction (Oxford Univ. Press, 2001).

  33. Scharlemann, E. T., Sessler, A. M. & Wurtele, J. S. Optical guiding in a free-electron laser. Phys. Rev. Lett. 54, 1925–1928 (1985).

    Article  ADS  Google Scholar 

  34. Blachman, N. M. & Courant, E. D. The dynamics of synchrotron with straight sections. Rev. Sci. Instrum. 20, 596–601 (1949).

    Article  ADS  Google Scholar 

  35. Qi, P. & Shvyd’ko, Y. Signatures of misalignment in X-ray cavities of cavity-based X-ray free-electron lasers. Phys. Rev. Accel. Beams 25, 050701 1–20 (2022).

  36. Tiwari, G. & Lindberg, R. R. Misalignment effects on the performance and stability of X-ray free-electron laser oscillator. Phys. Rev. Accel. Beams 25, 090702 1–22 (2022).

  37. Lindberg, R. R., Kim, K.-J., Cai, Y., Ding, Y. & Huang, Z. Transverse gradient undulators for a storage ring x-ray FEL oscillator. in Proc. of the Free Electron Laser Conference THOBNO02 (eds Scholl, C. & Schaa, V.) 740–748 (JACoW, 2013).

  38. Yamaji, T. et al. An experiment of X-ray photon-photon elastic scattering with a Laue-case beam collider. Phys. Lett. B 763, 454–457 (2016).

    Article  ADS  Google Scholar 

  39. Adams, B. W. et al. X-ray quantum optics. J. Mod. Opt. 60, 2–21 (2013).

    Article  ADS  Google Scholar 

  40. Pradhan, P. et al. Small Bragg-plane slope errors revealed in synthetic diamond crystals. J. Synchrotron Rad. 27, 1553–1563 (2020).

    Article  Google Scholar 

  41. Tamasaku, K., Ueda, T., Miwa, D. & Ishikawa, T. Goniometric and topographic characterization of synthetic IIa diamonds. J. Phys. D: Appl. Phys. 38, A61–A66 (2005).

    Article  ADS  Google Scholar 

  42. Halavanau, A. et al. Experimental setup for high-resolution characterization of crystal optics for coherent X-ray beam applications. J. Appl. Crystallogr. 56, 155–159 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to K.-J. Kim, Y. Shvyd’ko, R. Lindberg, D. Shu and H. Sumiya for insightful discussions. Diamond mirror characterization was performed at RIKEN SPring-8 (proposal numbers 20190013 and 20200085) and at the Stanford Synchrotron Radiation Light Source. Use of the Linac Coherent Light Source, SLAC National Accelerator Laboratory, was supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. This research was also supported by the Department of Energy Laboratory Directed Research and Development programme at SLAC.

Author information

Authors and Affiliations

Authors

Contributions

J.M., G.M., Z.H. and D.Z. conceived the experiment. R.M., R.R., A.H., K.L., T.O., A.S., T.S., Y.S., K.T., G.M. and D.Z. carried out the experiment. R.M., R.R., A.H., K.L., J.M., T.O., A.S., T.S. and K.T. prepared X-ray cavity optics. R.M., R.R., A.H., J.K., T.S., Y.S., G.M. and D.Z. performed the data analysis. R.M., R.R., A.H., G.M., Z.H. and D.Z. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Gabriel Marcus or Diling Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Enrico Allaria, Heung-Sik Kang, Jörg Rossbach, Timur Shaftan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–4, Table 1, and Discussion.

Source data

Source Data Fig. 2

Ring-down traces and cavity efficiency datapoints.

Source Data Fig. 3

Fitted beam size and trajectory datapoints.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margraf, R., Robles, R., Halavanau, A. et al. Low-loss stable storage of 1.2 Å X-ray pulses in a 14 m Bragg cavity. Nat. Photon. 17, 878–882 (2023). https://doi.org/10.1038/s41566-023-01267-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01267-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing