Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct characterization of shear phonons in layered materials by mechano-Raman spectroscopy

Abstract

Shear phonons are collective atomic-layer motions in layered materials that carry critical information about mechanical, thermal and optoelectronic properties. Phonon branches with co-directional atomic-layer motions carry unique information about the global structure and hidden interfaces in layered crystals and heterostructures, but they are not detectable due to the very limited electron–phonon coupling. Here we utilize the propagating feature and mechanical coupling between shear phonons and localized plasmonic cavities to successfully realize direct characterization of ground-state shear phonons down to 4 cm−1 in energy by introducing mechano-Raman spectroscopy (MRS). MRS has the ability to characterize the global crystal structure with more than 108-fold enhancement and to accurately measure subpicometre displacements under ambient conditions with a thermal-noise-free feature. The propagating behaviour and the capacity of MRS to detect optically hidden interfaces are demonstrated. The broad tunability of plasmons makes the MRS technique a robust tool for extensive applications, including global crystal flaw detection, mechanical sensing and the mechanical modulation of light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MRS for direct frequency-domain detection of mechanical vibrations.
Fig. 2: MRS for dark phonon observation and quantitative mechanical investigations.
Fig. 3: Thermal-noise-free feature of MRS.
Fig. 4: Propagating behaviour in multi-component vibrators and the capacity for hidden-interface detection.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  ADS  Google Scholar 

  2. Xu, W. G. et al. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541, 62–67 (2017).

    Article  ADS  Google Scholar 

  3. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  ADS  Google Scholar 

  4. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  Google Scholar 

  5. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  ADS  Google Scholar 

  6. Tran, K. et al. Evidence for moire excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    Article  ADS  Google Scholar 

  7. Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article  ADS  Google Scholar 

  8. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  9. Hong, X. P. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  ADS  Google Scholar 

  10. Tan, P. H. et al. The shear mode of multilayer graphene. Nat. Mater. 11, 294–300 (2012).

    Article  ADS  Google Scholar 

  11. Quan, J. M. et al. Phonon renormalization in reconstructed MoS2 moiré superlattices. Nat. Mater. 20, 1100–1105 (2021).

    Article  ADS  Google Scholar 

  12. Zhang, K. et al. Enhancement of van der Waals interlayer coupling through polar Janus MoSSe. J. Am. Chem. Soc. 142, 17499–17507 (2020).

    Article  Google Scholar 

  13. Luckyanova, M. N. et al. Coherent phonon heat conduction in superlattices. Science 338, 936–939 (2012).

    Article  ADS  Google Scholar 

  14. Long, D. A. & Long, D. The Raman Effect: a Unified Treatment of the Theory of Raman Scattering by Molecules Vol. 8 (Wiley, 2002).

  15. Madeo, J. et al. Directly visualizing the momentum-forbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199–1203 (2020).

    Article  ADS  Google Scholar 

  16. Wu, B. et al. Visible-light photoexcited electron dynamics of scandium endohedral metallofullerenes: the cage symmetry and substituent effects. J. Am. Chem. Soc. 137, 8769–8774 (2015).

    Article  Google Scholar 

  17. Roelli, P., Galland, C., Piro, N. & Kippenberg, T. J. Molecular cavity optomechanics as a theory of plasmon-enhanced Raman scattering. Nat. Nanotechnol. 11, 164–169 (2016).

    Article  ADS  Google Scholar 

  18. Chen, W., Roelli, P., Hu, H., Verlekar, S. & Galland, C. Continuous-wave frequency upconversion with a molecular optomechanical nanocavity. Science 374, 1264–1267 (2021).

    Article  ADS  Google Scholar 

  19. Xomalis, A., Zheng, X., Chikkaraddy, R., Koczor-Benda, Z. & Baumberg, J. J. Detecting mid-infrared light by molecular frequency upconversion with dual-wavelength hybrid nanoantennas. Science 374, 1268–1271 (2021).

    Article  ADS  Google Scholar 

  20. Benz, F. et al. Single-molecule optomechanics in ‘picocavities’. Science 354, 726–729 (2016).

    Article  ADS  Google Scholar 

  21. Nie, S. & Emory, S. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  22. Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T. & Feld, M. S. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  Google Scholar 

  23. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  ADS  Google Scholar 

  24. Zhang, R., Dong, Y., Jiang, Z. C. & Chen, S. C. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 498, 82–86 (2013).

    Article  ADS  Google Scholar 

  25. Joonhee et al. Visualizing vibrational normal modes of a single molecule with atomically confined light. Nature 568, 78–92 (2019).

    Article  Google Scholar 

  26. Xu, J. Y. et al. Determining structural and chemical heterogeneities of surface species at the single-bond limit. Science 371, 818–822 (2021).

    Article  ADS  Google Scholar 

  27. Ding, S. Y., Yi, J., Li, J. F., Ren, B. & Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  ADS  Google Scholar 

  28. Gonzalez-Rubio, G. et al. Femtosecond laser reshaping yields gold nanorods with ultranarrow surface plasmon resonances. Science 358, 640–644 (2017).

    Article  ADS  Google Scholar 

  29. Duan, S., Rinkevicius, Z., Tian, G. J. & Luo, Y. Optomagnetic effect induced by magnetized nanocavity plasmon. J. Am. Chem. Soc. 141, 13795–13798 (2019).

    Article  Google Scholar 

  30. Sharma, B., Frontiera, R. R., Henry, A. I., Ringe, E. & Van Duyne, R. P. SERS: materials, applications and the future. Mater. Today 15, 16–25 (2012).

    Article  Google Scholar 

  31. Butt, H. J. & Jaschke, M. Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6, 1–7 (1995).

    Article  ADS  Google Scholar 

  32. Cong, C. X. & Yu, T. Enhanced ultra-low-frequency interlayer shear modes in folded graphene layers. Nat. Commun. 5, 4709 (2014).

    Article  ADS  Google Scholar 

  33. Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

    Article  ADS  Google Scholar 

  34. Wang, G. R. et al. Bending of multilayer van der Waals materials. Phys. Rev. Lett. 123, 116101 (2019).

    Article  ADS  Google Scholar 

  35. Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

    Article  ADS  Google Scholar 

  36. Salvetat, J. P. et al. Elastic and shear moduli of single-walled carbon nanotube ropes. Phys. Rev. Lett. 82, 944–947 (1999).

    Article  ADS  Google Scholar 

  37. van Baren, J. et al. Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2D Mater. 6, 025022 (2019).

    Article  ADS  Google Scholar 

  38. Lee, C., Wei, X. D., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  39. Riedinger, R. et al. Non-classical correlations between single photons and phonons from a mechanical oscillator. Nature 530, 313–316 (2016).

    Article  ADS  Google Scholar 

  40. Yu, H. Y., Liu, G. B., Tang, J. J., Xu, X. D. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit-coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  ADS  Google Scholar 

  41. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    Article  ADS  Google Scholar 

  42. Xu, W. G. et al. Graphene-veiled gold substrate for surface-enhanced Raman spectroscopy. Adv. Mater. 25, 928–933 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (22173044, 21873048 and 22073017), the Natural Science Foundation of Jiangsu Province (BK20220121), the National Key R&D Program of China (2020YFA0406104), the Fundamental Research Funds for the Central Universities in China (021014380177), the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University (DLTD2110), ‘Innovation & Entrepreneurship Talents Plan’ of Jiangsu Province and the Innovation Program for Quantum Science and Technology (2021ZD0303301, 2021ZD0303303 and 2021ZD0303305). Z.J. acknowledges funding support from the CAS Interdisciplinary Innovation Team and the National Natural Science Foundation of China (12074371).

Author information

Authors and Affiliations

Authors

Contributions

W.X. and S.F. conceived the initial idea. W.X., Y.L., S.D. and S.F. designed the experiments. S.F. fabricated the samples and performed the spectroscopy measurement experiments with help from L.L., H.L., B.J., C.L., N.W. and L.Z., and Y.Y., S.C. and X. Wen performed finite-difference time-domain simulations. S.D., J.Z., X. Wang, D.X., Y.L. and W.X. contributed to theoretical analyses. S.F. collected and organized all experimental data. S.F., S.D., X. Wang, H.L., Y.L. and W.X. co-wrote the manuscript, with input from all authors.

Corresponding authors

Correspondence to Daiqian Xie, Yi Luo or Weigao Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–12, Tables 1 and 2, references and caption for Video 1.

Supplementary Video 1

Schematic view of a 1,000,000,000,000 times slow motion of MRS processes driven by ν1 and ν12 shear phonon vibrators in 13LG.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Duan, S., Wang, X. et al. Direct characterization of shear phonons in layered materials by mechano-Raman spectroscopy. Nat. Photon. 17, 531–537 (2023). https://doi.org/10.1038/s41566-023-01181-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-023-01181-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing