Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Bright single-nanocrystal upconversion at sub 0.5 W cm−2 irradiance via coupling to single nanocavity mode

Abstract

Lanthanide-doped nanocrystals have been actively pursued as anti-Stokes emitters in various contexts, including bioimaging, photovoltaics, catalysis, displays, anticounterfeiting, sensing and lasers. The success of these applications crucially relies on their high brightness under low excitation. To enhance their upconversion luminescence, researchers have improved the internal material properties of nanocrystals (their composition, doping, and crystal and surface structures) and, in parallel, engineered external optical responses using plasmonic couplings. However, despite impressive progress, upconversion brightness still falls short of what is required for applications, and a systematic understanding of plasmon-enhanced upconversion remains elusive. Here we report an important conceptual advance in understanding and demonstrate unprecedentedly bright upconversion of single nanocrystals via coupling to a single plasmonic nanocavity mode. We present in situ-controlled single-nanocrystal-level studies with unified internal and external treatment, and unambiguously experimentally demonstrate the phenomenon of plasmonic enhancement saturation. We show that the saturation is doping-dependent, and we report a 2.3 × 105-fold enhancement of upconversion luminescence. More importantly, we outline a new strategy to devise ultrabright upconversion nanomaterials and demonstrate that single sub-30-nm nanocrystals can provide up to 560 detected photons per second at an ultralow excitation intensity of 0.45 W cm−2. These findings help to establish the link between the optical physics and material science in lanthanide-doped nanocrystals and facilitate the engineering of optimal upconversion nanomaterials for various applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle and realization of controlled single-nanocrystal upconversion in a single plasmonic nanocavity mode.
Fig. 2: Nanocavity–UCNC composite featuring single-nanocrystal single-mode coupling.
Fig. 3: Experimental demonstration of the saturation of UCL enhancement.
Fig. 4: Ultrastrong UCL enhancement.
Fig. 5: Ultrabright UCL.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

All codes used in this paper are available from the corresponding authors upon reasonable request.

References

  1. Zhou, B., Shi, B., Jin, D. & Liu, X. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol. 10, 924–936 (2015).

    ADS  Google Scholar 

  2. Chen, G., Ågren, H., Ohulchanskyy, T. Y. & Prasad, P. N. Light upconverting core-shell nanostructures: nanophotonic control for emerging applications. Chem. Soc. Rev. 44, 1680–1713 (2015).

    Google Scholar 

  3. Casar, J. R., McLellan, C. A., Siefe, C. & Dionne, J. A. Lanthanide-based nanosensors: refining nanoparticle responsiveness for single particle imaging of stimuli. ACS Photonics 8, 3–17 (2021).

    Google Scholar 

  4. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–174 (2004).

    Google Scholar 

  5. Wen, S. et al. Advances in highly doped upconversion nanoparticles. Nat. Commun. 9, 2415 (2018).

    ADS  Google Scholar 

  6. Han, S., Deng, R., Xie, X. & Liu, X. Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem. Int. Ed. 53, 11702–11715 (2014).

    Google Scholar 

  7. Gargas, D. J. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 9, 300–305 (2014).

    ADS  Google Scholar 

  8. Liu, Q. et al. Single upconversion nanoparticle imaging at sub-10 W cm−2 irradiance. Nat. Photon. 12, 548–553 (2018).

    ADS  Google Scholar 

  9. Wang, F. et al. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 10, 968–973 (2011).

    ADS  Google Scholar 

  10. Wu, D. M., Garcia-Etxarri, A., Salleo, A. & Dionne, J. A. Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014).

    Google Scholar 

  11. Park, W., Lu, D. & Ahn, S. Plasmon enhancement of luminescence upconversion. Chem. Soc. Rev. 44, 2940–2962 (2015).

    Google Scholar 

  12. Qin, X. et al. Surface plasmon-photon coupling in lanthanide-doped nanoparticles. J. Phys. Chem. Lett. 12, 1520–1541 (2021).

    Google Scholar 

  13. Lalanne, P., Yan, W., Vynck, K., Sauvan, C. & Hugonin, J. P. Light interaction with photonic and plasmonic resonances. Laser Photon. Rev. 12, 1700113 (2018).

    ADS  Google Scholar 

  14. Aisaka, T., Fujii, M. & Hayashi, S. Enhancement of upconversion luminescence of Er doped Al2O3 films by Ag island films. Appl. Phys. Lett. 92, 132105 (2008).

    ADS  Google Scholar 

  15. Esteban, R., Laroche, M. & Greffet, J. J. Influence of metallic nanoparticles on upconversion processes. J. Appl. Phys. 105, 033107 (2009).

    ADS  Google Scholar 

  16. Schietinger, S., Aichele, T., Wang, H. Q., Nann, T. & Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010).

    ADS  Google Scholar 

  17. Zhang, H. et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010).

    Google Scholar 

  18. Deng, W. et al. Ultrabright Eu-doped plasmonic Ag@SiO2 nanostructures: time-gated bioprobes with single particle sensitivity and negligible background. Adv. Mater. 23, 4649–4654 (2011).

    Google Scholar 

  19. Zhang, W., Ding, F. & Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4:Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Opt. Mater. 24, OP236–OP241 (2012).

    Google Scholar 

  20. Zhan, Q. Q., Zhang, X., Zhao, Y. X., Liu, J. & He, S. L. Tens of thousands-fold upconversion luminescence enhancement induced by a single gold nanorod. Laser Photon. Rev. 9, 479–487 (2015).

    ADS  Google Scholar 

  21. Greybush, N. J. et al. Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. ACS Nano 8, 9482–9491 (2014).

    Google Scholar 

  22. Chen, G. et al. Tip-enhanced upconversion luminescence in Yb3+-Er3+ codoped NaYF4 nanocrystals. J. Phys. Chem. C 119, 22604–22610 (2015).

    Google Scholar 

  23. Mauser, N. et al. Tip enhancement of upconversion photoluminescence from rare earth ion doped nanocrystals. ACS Nano 9, 3617–3626 (2015).

    Google Scholar 

  24. Yin, Z. et al. Local field modulation induced three-order upconversion enhancement: combining surface plasmon effect and photonic crystal effect. Adv. Mater. 28, 2518–2525 (2016).

    Google Scholar 

  25. Kwon, S. J. et al. A plasmonic platform with disordered array of metal nanoparticles for three-order enhanced upconversion luminescence and highly sensitive near-infrared photodetector. Adv. Mater. 28, 7899–7909 (2016).

    Google Scholar 

  26. Kang, F. W. et al. Plasmonic dual-enhancement and precise color tuning of gold Nanorod@SiO2 coupled core-shell-shell upconversion nanocrystals. Adv. Funct. Mater. 27, 1701842 (2017).

    Google Scholar 

  27. Xue, Y. X. et al. Tuning plasmonic enhancement of single nanocrystal upconversion luminescence by varying gold nanorod diameter. Small 13, 1701155 (2017).

    Google Scholar 

  28. Das, A., Mao, C., Cho, S., Kim, K. & Park, W. Over 1,000-fold enhancement of upconversion luminescence using water-dispersible metal–insulator–metal nanostructures. Nat. Commun. 9, 4828 (2018).

    ADS  Google Scholar 

  29. Wu, Y. et al. Upconversion superburst with sub-2-μs lifetime. Nat. Nanotechnol. 14, 1110–1115 (2019).

    ADS  Google Scholar 

  30. Alizadehkhaledi, A. et al. Cascaded plasmon-enhanced emission from a single upconverting nanocrystal. ACS Photonics 6, 1125–1131 (2019).

    Google Scholar 

  31. Xu, J. H. et al. Multiphoton upconversion enhanced by deep subwavelength near-field confinement. Nano Lett. 21, 3044–3051 (2021).

    ADS  Google Scholar 

  32. Malta, O. L. Mechanisms of non-radiative energy transfer involving lanthanide ions revisited. J. Non-Cryst. Solids 354, 4770–4776 (2008).

    ADS  Google Scholar 

  33. Purcell, E. M. Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946).

    Google Scholar 

  34. Rabouw, F. T. et al. Quenching pathways in NaYF4:Er3+,Yb3+ upconversion nanocrystals. ACS Nano 12, 4812–4823 (2018).

    Google Scholar 

  35. Nadort, A., Zhao, J. B. & Goldys, E. M. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties. Nanoscale 8, 13099–13130 (2016).

    ADS  Google Scholar 

  36. Fischer, S., Bronstein, N. D., Swabeck, J. K., Chan, E. M. & Alivisatos, A. P. Precise tuning of surface quenching for luminescence enhancement in core-shell lanthanide-doped nanocrystals. Nano Lett. 16, 7241–7247 (2016).

    ADS  Google Scholar 

  37. Potton, R. J. Reciprocity in optics. Rep. Prog. Phys. 67, 717–754 (2004).

    ADS  Google Scholar 

  38. Shafiei, F. et al. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat. Nanotechnol. 8, 95–99 (2013).

    ADS  Google Scholar 

  39. Wen, T. et al. Steering valley-polarized emission of monolayer MoS2 sandwiched in plasmonic antennas. Sci. Adv. 6, eaao0019 (2020).

    ADS  Google Scholar 

  40. Taminiau, T. H., Stefani, F. D., Segerink, F. B. & Van Hulst, N. F. Optical antennas direct single-molecule emission. Nat. Photon. 2, 234–237 (2008).

    Google Scholar 

  41. Lieb, M. A., Zavislan, J. M. & Novotny, L. Single-molecule orientations determined by direct emission pattern imaging. J. Opt. Soc. Am. B 21, 1210–1215 (2004).

    ADS  Google Scholar 

  42. Peng, X. et al. Fast upconversion super-resolution microscopy with 10 μs per pixel dwell times. Nanoscale 11, 1563–1569 (2019).

    Google Scholar 

  43. Ma, C. et al. Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 17, 2858–2864 (2017).

    ADS  Google Scholar 

  44. Braud, A. et al. Energy-transfer processes in Yb:Tm-doped KY3F10, LiYF4 and BaY2F8 single crystals for laser operation at 1.5 and 2.3 μm. Phys. Rev. B 61, 5280–5292 (2000).

    ADS  Google Scholar 

  45. Zhang, T. S., Gao, N. Y., Li, S., Lang, M. J. & Xu, Q. H. Single-particle spectroscopic study on fluorescence enhancement by plasmon coupled gold nanorod dimers assembled on DNA origami. J. Phys. Chem. Lett. 6, 2043–2049 (2015).

    Google Scholar 

  46. Nicoli, F. et al. DNA-mediated self-assembly of plasmonic antennas with a single quantum dot in the hot spot. Small 15, 1804418 (2019).

    Google Scholar 

  47. Wang, X. D. et al. High-sensitivity sensing of divalent copper ions at the single upconversion nanoparticle level. Anal. Chem. 93, 11686–11691 (2021).

    Google Scholar 

  48. Shang, Y. et al. Low threshold lasing emissions from a single upconversion nanocrystal. Nat. Commun. 11, 6156 (2020).

    ADS  Google Scholar 

  49. Koenderink, A. F., Alù, A. & Polman, A. Nanophotonics: shrinking light-based technology. Science 348, 516–521 (2015).

    ADS  Google Scholar 

  50. Koenderink, A. F. Single-photon nanoantennas. ACS Photonics 4, 710–722 (2017).

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support from the National Natural Science Foundation of China (grant no. 11874166 to X.-W.C., 92150111 to X.-W.C., 62235006 to X.-W.C., 12004130 to J.T., 51972084 to G.C., 52272270 to G. C. and 51672061 to G.C.), the Fundamental Research Funds for the Central Universities, China (AUGA5710052614 to G.C.), the State Key Laboratory of Urban Water Resource and Environment (Harbin Institute of Technology; no. 2020DX10 to G.C.) and Huazhong University of Science and Technology (X.-W.C. and J.T.).

Author information

Authors and Affiliations

Authors

Contributions

X.-W.C. conceived the research. X.-W.C., G.C. and J.T. designed the experiment. Y.M., J.T., X.F., T.M. and J.H. carried out the UCNC–nanocavity coupling experiment and optical measurements. D.H. and F.L. synthesized and characterized the UCNC samples under the guidance of G.C. J.T., X.-W.C., H.L., Q.L. and J.H. developed the theoretical model and performed numerical simulations. X.-W.C., G.C., J.T. and Y.M. discussed the results and analysed data. The paper was written by X.-W.C. and J.T., and comments were provided by Y.M. and G.C. The project was supervised by X.-W.C., J.T. and G.C.

Corresponding authors

Correspondence to Jianwei Tang, Guanying Chen or Xue-Wen Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Steven Chu, Aitzol García-Etxarri and Xiaogang Liu for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Discussion and Tables 1–5.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Y., Huang, D., Li, H. et al. Bright single-nanocrystal upconversion at sub 0.5 W cm−2 irradiance via coupling to single nanocavity mode. Nat. Photon. 17, 73–81 (2023). https://doi.org/10.1038/s41566-022-01101-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-022-01101-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing