Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Few-photon all-optical phase rotation in a quantum-well micropillar cavity


Photonic platforms are an excellent setting for quantum technologies as weak photon–environment coupling ensures long coherence times. The second key ingredient for quantum photonics is interactions between photons, which can be provided by optical nonlinearities in the form of cross-phase modulation. This approach underpins many proposed applications in quantum optics1,2,3,4,5,6,7 and information processing8, but achieving its potential requires strong single-photon-level nonlinear phase shifts as well as scalable nonlinear elements. In this work we show that the required nonlinearity can be provided by exciton–polaritons in micropillars with embedded quantum wells. These combine the strong interactions of excitons9,10 with the scalability of micrometre-sized emitters11. We observe cross-phase modulation of up to 3 ± 1 mrad per polariton using laser beams attenuated to below the average intensity of a single photon. With our work serving as a stepping stone, we lay down a route for quantum information processing in polaritonic lattices.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Sample properties.
Fig. 2: Measured phase shift as a function of control beam mean polariton number.
Fig. 3: Phase shift dependence on control beam polarization.

Data availability

The data supporting the findings of this study are freely available in the University of Sheffield repository with the identifier

Code availability

The custom codes used in this study are available from the corresponding author on reasonable request.


  1. Vitali, D., Fortunato, M. & Tombesi, P. Complete quantum teleportation with a kerr nonlinearity. Phys. Rev. Lett. 85, 445–448 (2000).

    ADS  Article  Google Scholar 

  2. Munro, W. J., Nemoto, K., Beausoleil, R. G. & Spiller, T. P. High-efficiency quantum-nondemolition single-photon-number-resolving detector. Phys. Rev. A 71, 033819 (2005).

    ADS  Article  Google Scholar 

  3. Spiller, T. P. et al. Quantum computation by communication. New J. Phys. 8, 30–30 (2006).

    ADS  Article  Google Scholar 

  4. Joo, J., Munro, W. J. & Spiller, T. P. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011).

    ADS  Article  Google Scholar 

  5. Simon, D. S., Jaeger, G. & Sergienko, A. V. Entangled-coherent-state quantum key distribution with entanglement witnessing. Phys. Rev. A 89, 012315 (2014).

    ADS  Article  Google Scholar 

  6. Chuang, I. L. & Yamamoto, Y. Simple quantum computer. Phys. Rev. A 52, 3489–3496 (1995).

    ADS  Article  Google Scholar 

  7. Hutchinson, G. D. & Milburn, G. J. Nonlinear quantum optical computing via measurement. J. Modern Optics 51, 1211–1222 (2004).

    ADS  MathSciNet  Article  Google Scholar 

  8. Brod, D. J., Combes, J. & Gea-Banacloche, J. Two photons co- and counterpropagating through N cross-Kerr sites. Phys. Rev. A 94, 023833 (2016).

    ADS  Article  Google Scholar 

  9. Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mate. 18, 219–222 (2019).

    Article  Google Scholar 

  10. Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article  Google Scholar 

  11. Amo, A. & Bloch, J. Exciton-polaritons in lattices: a non-linear photonic simulator. C. R Phys. 17, 934–945 (2016).

    ADS  Article  Google Scholar 

  12. Shapiro, J. H. Single-photon Kerr nonlinearities do not help quantum computation. Phys. Rev. A 73, 062305 (2006).

    ADS  Article  Google Scholar 

  13. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    ADS  MathSciNet  Article  Google Scholar 

  14. Venkataraman, V., Saha, K. & Gaeta, A. L. Phase modulation at the few-photon level for weak-nonlinearity-based quantum computing. Nat. Photon. 7, 138–141 (2012).

    ADS  Article  Google Scholar 

  15. Hickman, G. T., Pittman, T. B. & Franson, J. D. Low-power cross-phase modulation in a metastable xenon-filled cavity for quantum-information applications. Phys. Rev. A 92, 053808 (2015).

    ADS  Article  Google Scholar 

  16. Liu, Z.-Y. et al. Large cross-phase modulations at the few-photon level. Phys. Rev. Lett. 117, 203601 (2016).

    ADS  Article  Google Scholar 

  17. Tiarks, D., Schmidt, S., Rempe, G. & Dürr, S. Optical π phase shift created with a single-photon pulse. Sci. Adv. 2, e1600036 (2016).

    ADS  Article  Google Scholar 

  18. Sagona-Stophel, S., Shahrokhshahi, R., Jordaan, B., Namazi, M. & Figueroa, E. Conditional π-phase shift of single-photon-level pulses at room temperature. Phys. Rev. Lett. 125, 243601 (2020).

    ADS  Article  Google Scholar 

  19. Volz, J., Scheucher, M., Junge, C. & Rauschenbeutel, A. Nonlinear π phase shift for single fibre-guided photons interacting with a single resonator-enhanced atom. Nat. Photon. 8, 965–970 (2014).

    ADS  Article  Google Scholar 

  20. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    ADS  Article  Google Scholar 

  21. Englund, D. et al. Ultrafast photon-photon interaction in a strongly coupled quantum dot-cavity system. Phys. Rev. Lett. 108, 093604 (2012).

    ADS  Article  Google Scholar 

  22. Hacker, B., Welte, S., Rempe, G. & Ritter, S. A photon–photon quantum gate based on a single atom in an optical resonator. Nature 536, 193–196 (2016).

    ADS  Article  Google Scholar 

  23. Sun, S., Kim, H., Luo, Z., Solomon, G. S. & Waks, E. A single-photon switch and transistor enabled by a solid-state quantum memory. Science 361, 57–60 (2018).

    ADS  Article  Google Scholar 

  24. Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Observation of optical-fibre kerr nonlinearity at the single-photon level. Nat. Photon. 3, 95–98 (2009).

    ADS  Article  Google Scholar 

  25. Bajoni, D. et al. Polariton laser using single micropillar GaAs-GaAlAs semiconductor cavities. Phys. Rev. Lett. 100, 047401 (2008).

    ADS  Article  Google Scholar 

  26. Walker, P. M. et al. Dark solitons in high velocity waveguide polariton fluids. Phys. Rev. Lett. 119, 097403 (2017).

    ADS  Article  Google Scholar 

  27. Vladimirova, M. et al. Polariton-polariton interaction constants in microcavities. Phys. Rev. B 82, 075301 (2010).

    ADS  Article  Google Scholar 

  28. Amo, A. et al. Exciton–polariton spin switches. Nat. Photon. 4, 361–366 (2010).

    ADS  Article  Google Scholar 

  29. Vishnevsky, D. V., Solnyshkov, D. D., Gippius, N. A. & Malpuech, G. Multistability of cavity exciton polaritons affected by the thermally generated exciton reservoir. Phys. Rev. B 85, 155328 (2012).

    ADS  Article  Google Scholar 

  30. Sekretenko, A. V., Gavrilov, S. S. & Kulakovskii, V. D. Polariton-polariton interactions in microcavities under a resonant 10 to 100 picosecond pulse excitation. Phys. Rev. B 88, 195302 (2013).

    ADS  Article  Google Scholar 

  31. Ouellet-Plamondon, C. et al. Reservoir-induced decoherence of resonantly excited confined polaritons. Phys. Rev. B 95, 085302 (2017).

    ADS  Article  Google Scholar 

  32. Borri, P., Langbein, W., Woggon, U., Jensen, J. R. & Hvam, J. M. Microcavity polariton linewidths in the weak-disorder regime. Phys. Rev. B 63, 035307 (2000).

    ADS  Article  Google Scholar 

  33. Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    Article  Google Scholar 

  34. Vladimirova, M. et al. Polarization controlled nonlinear transmission of light through semiconductor microcavities. Phys. Rev. B 79, 115325 (2009).

    ADS  Article  Google Scholar 

  35. Brichkin, A. S. et al. Effect of Coulomb interaction on exciton-polariton condensates in GaAs pillar microcavities. Phys. Rev. B 84, 195301 (2011).

    ADS  Article  Google Scholar 

  36. Estrecho, E. et al. Direct measurement of polariton-polariton interaction strength in the thomas-fermi regime of exciton-polariton condensation. Phys. Rev. B 100, 035306 (2019).

    ADS  Article  Google Scholar 

  37. Rosenberg, I. et al. Strongly interacting dipolar-polaritons. Sci. Adv. 4, eaat8880 (2018).

    ADS  Article  Google Scholar 

  38. Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    ADS  Article  Google Scholar 

  39. Solnyshkov, D. D. et al. Microcavity polaritons for topological photonics [invited]. Opt. Mater. Express 11, 1119 (2021).

    ADS  Article  Google Scholar 

  40. Harrigan, M. P. et al. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. Nat. Phys. 17, 332 (2021).

    Article  Google Scholar 

Download references


This work was supported by the Engineering and Physical Sciences Research Council grants EP/N031776/1 and EP/V026496/1, the QUANTERA project Interpol (EP/R04385X/1 and ANR-QUAN-0003-05), the Paris Ile-de-France Région in the framework of DIM SIRTEQ, ERC StG ARQADIA (949730) and CoG EMERGENTOPO (865151), the Marie Skłodowska-Curie individual fellowship ToPol, the H2020-FETFLAG project PhoQus (820392) and the French RENATECH network. O.K. acknowledges the support from UK EPSRC New Investigator Award (EP/V00171X/1). A.A. acknowledges support from the Labex CEMPI (ANR-11-LABX-0007). I.A.S. acknowledges support from IRF (project ‘Hybrid polaritonics’) and Priority 2030 Federal Academic Leadership Program.

Author information

Authors and Affiliations



P.M.W. and D.N.K. conceived and designed the experiment. T.K., P.M.W. and T.D. built the experimental apparatus and performed the experiments. P.S-J, N.C.Z., A.A., S.R. and J.B. designed and characterized the sample. A.L, IS, L.L and A.H fabricated the sample. P.M.W. analysed the data, and wrote the manuscript and Supplementary Information with contributions from T.K. and O.K. O K. developed the quantum theoretical description of XPM CPHASE gates. P.M.W. developed the classical theory for cavity occupancy and XPM polariton polarization rotation. All authors contributed to discussion of the data, and discussion and revision of the manuscript.

Corresponding author

Correspondence to Paul M. Walker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Fetah Benabid and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion 1–10 and Figs. 1–10.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuriakose, T., Walker, P.M., Dowling, T. et al. Few-photon all-optical phase rotation in a quantum-well micropillar cavity. Nat. Photon. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing