Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatiotemporally controlled room-temperature exciton transport under dynamic strain

Abstract

Two-dimensional transition metal dichalcogenides provide an attractive platform for studying strain-dependent exciton transport at room temperature due to large exciton binding energy and strong bandgap sensitivity to mechanical stimuli. Here we use Rayleigh-type surface acoustic waves to demonstrate controlled and directional exciton transport under the weak coupling regime at room temperature. We screen the in-plane piezoelectric field using photogenerated carriers to study transport under type-I bandgap modulation and measure a maximum exciton drift velocity of 600 m s–1. Furthermore, we demonstrate the precise steering of exciton flux by controlling the relative phase between the input RF excitation and exciton photogeneration. The results provide an important insight into the weak coupling regime between the dynamic strain wave and room-temperature excitons in a two-dimensional semiconductor system and pave the way to exciting applications of excitonic devices ranging from data communication and processing to sensing and energy conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Modulation of hBN-encapsulated monolayer WSe2 PL by the piezoelectric field of the travelling SAW.
Fig. 2: Spatiotemporal modulation of exciton density in monolayer WSe2 at room temperature under travelling wave.
Fig. 3: Exciton transport in monolayer WSe2 under incremental RF power at optical fluence of 1.2 μJ cm–2.
Fig. 4: Spatiotemporally controlled energy transport under phase-modulated optical excitation for 15 dBm RF excitation.

Similar content being viewed by others

Data availability

The raw dataset from phase-synchronized diffusion measurements and CW PL measurements are available from the corresponding author upon reasonable request.

Code availability

The code for processing the raw TCSPC data is available from the corresponding author upon reasonable request.

References

  1. Scholes, G. D. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54, 57–87 (2003).

    Article  ADS  Google Scholar 

  2. Tan, T. et al. 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 7, 2000058 (2020).

    Article  Google Scholar 

  3. Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    Article  ADS  Google Scholar 

  4. Butov, L. V. Excitonic devices. Superlattices Microstruct. 108, 2–26 (2017).

    Article  ADS  Google Scholar 

  5. Grosso, G. et al. Excitonic switches operating at around 100 K. Nat. Photon. 3, 577–580 (2009).

    Article  ADS  Google Scholar 

  6. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  ADS  Google Scholar 

  7. Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  ADS  Google Scholar 

  8. Fowler-Gerace, L. H., Choksy, D. J. & Butov, L. V. Voltage-controlled long-range propagation of indirect excitons in van der Waals heterostructure. Phys. Rev. B 104, 165302 (2021).

    Article  ADS  Google Scholar 

  9. Moon, H. et al. Dynamic exciton funneling by local strain control in a monolayer semiconductor. Nano Lett. 20, 6791–6797 (2020).

    Article  ADS  Google Scholar 

  10. Cordovilla Leon, D. F., Li, Z., Jang, S. W., Cheng, C. H. & Deotare, P. B. Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018).

    Article  ADS  Google Scholar 

  11. High, A. A., Novitskaya, E. E., Butov, L. V., Hanson, M. & Gossard, A. C. Control of exciton fluxes in an excitonic integrated circuit. Science 321, 229–231 (2008).

    Article  ADS  Google Scholar 

  12. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    Article  MathSciNet  Google Scholar 

  13. Unuchek, D. et al. Room-temperature electrical control of exciton flux in a van der Waals heterostructure. Nature 560, 340–344 (2018).

    Article  ADS  Google Scholar 

  14. Jiang, Y., Chen, S., Zheng, W., Zheng, B. & Pan, A. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light Sci. Appl. 10, 72 (2021).

    Article  ADS  Google Scholar 

  15. Unuchek, D. et al. Valley-polarized exciton currents in a van der Waals heterostructure. Nat. Nanotechnol. 14, 1104–1109 (2019).

    Article  ADS  Google Scholar 

  16. Rudolph, J., Hey, R. & Santos, P. V. Long-range exciton transport by dynamic strain fields in a GaAs quantum well. Phys. Rev. Lett. 99, 047602 (2007).

    Article  ADS  Google Scholar 

  17. Violante, A. et al. Dynamics of indirect exciton transport by moving acoustic fields. New J. Phys. 16, 033035 (2014).

    Article  ADS  Google Scholar 

  18. Lazić, S. et al. Scalable interconnections for remote indirect exciton systems based on acoustic transport. Phys. Rev. B 89, 085313 (2014).

    Article  ADS  Google Scholar 

  19. Jing, Y. et al. Tunable electronic structure of two-dimensional transition metal chalcogenides for optoelectronic applications. Nanophotonics 9, 1675–1694 (2020).

    Article  Google Scholar 

  20. Peng, Z., Chen, X., Fan, Y., Srolovitz, D. J. & Lei, D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 9, 190 (2020).

    Article  ADS  Google Scholar 

  21. Bandhu, L., Lawton, L. M. & Nash, G. R. Macroscopic acoustoelectric charge transport in graphene. Appl. Phys. Lett. 103, 133101 (2013).

    Article  ADS  Google Scholar 

  22. Miseikis, V., Cunningham, J. E., Saeed, K., O’Rorke, R. & Davies, A. G. Acoustically induced current flow in graphene. Appl. Phys. Lett. 100, 133105 (2012).

    Article  ADS  Google Scholar 

  23. Zhou, P., Chen, C., Wang, X., Hu, B. & San, H. 2-Dimentional photoconductive MoS2 nanosheets using in surface acoustic wave resonators for ultraviolet light sensing. Sens. Actuator. A Phys. 271, 389–397 (2018).

    Article  Google Scholar 

  24. Fandan, R. et al. Dynamic local strain in graphene generated by surface acoustic waves. Nano Lett. 20, 402–409 (2019).

    Article  ADS  Google Scholar 

  25. Rezk, A. R. et al. Acoustic–excitonic coupling for dynamic photoluminescence manipulation of quasi-2D MoS2 nanoflakes. Adv. Opt. Mater. 3, 888–894 (2015).

    Article  Google Scholar 

  26. Datta, K., Li, Z., Lyu, Z. & Deotare, P. B. Piezoelectric modulation of excitonic properties in monolayer WSe2 under strong dielectric screening. ACS Nano 15, 12334–12341 (2021).

    Article  Google Scholar 

  27. Hoshi, Y. et al. Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides. Phys. Rev. B 95, 241403 (2017).

    Article  ADS  Google Scholar 

  28. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  29. Wierzbowski, J. et al. Direct exciton emission from atomically thin transition metal dichalcogenide heterostructures near the lifetime limit. Sci. Rep. 7, 12383 (2017).

    Article  ADS  Google Scholar 

  30. Hotta, T. et al. Exciton diffusion in a hBN-encapsulated monolayer MoSe2. Phys. Rev. B 102, 115424 (2020).

    Article  ADS  Google Scholar 

  31. Lin, Y. et al. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett. 14, 5569–5576 (2014).

    Article  ADS  Google Scholar 

  32. Santos, P. V., Ramsteiner, M. & Jungnickel, F. Spatially resolved photoluminescence in GaAs surface acoustic wave structures. Appl. Phys. Lett. 72, 2099–2101 (1998).

    Article  ADS  Google Scholar 

  33. Morgan, D. Surface Acoustic Wave Filters (Elsevier, 2007).

  34. García-Cristóbal, A., Cantarero, A., Alsina, F. & Santos, P. V. Spatiotemporal carrier dynamics in quantum wells under surface acoustic waves. Phys. Rev. B 69, 205301 (2004).

    Article  ADS  Google Scholar 

  35. Aas, S. & Bulutay, C. Strain dependence of photoluminescence and circular dichroism in transition metal dichalcogenides: a k·p analysis. Opt. Express 26, 28672–28681 (2018).

    Article  ADS  Google Scholar 

  36. Shur, V. Y. Lithium niobate and lithium tantalate-based piezoelectric materials. in Advanced Piezoelectric Materials: Science and Technology 204–238 (Elsevier, 2010).

  37. Gärtner, A., Holleitner, A. W., Kotthaus, J. P. & Schuh, D. Drift mobility of long-living excitons in coupled GaAs quantum wells. Appl. Phys. Lett. 89, 52108 (2006).

    Article  Google Scholar 

  38. Dorow, C. J. et al. High-mobility indirect excitons in wide single quantum well. Appl. Phys. Lett. 113, 212102 (2018).

    Article  ADS  Google Scholar 

  39. Falin, A. et al. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8, 15815 (2017).

    Article  ADS  Google Scholar 

  40. Mueller, T. & Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 29 (2018).

    Article  Google Scholar 

  41. Feierabend, M., Morlet, A., Berghäuser, G. & Malic, E. Impact of strain on the optical fingerprint of monolayer transition-metal dichalcogenides. Phys. Rev. B 96, 045425 (2017).

    Article  ADS  Google Scholar 

  42. Feng, J., Qian, X., Huang, C. W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866–872 (2012).

    Article  ADS  Google Scholar 

  43. Harats, M. G., Kirchhof, J. N., Qiao, M., Greben, K. & Bolotin, K. I. Dynamics and efficient conversion of excitons to trions in non-uniformly strained monolayer WS2. Nat. Photon. 14, 324–329 (2020).

    Article  ADS  Google Scholar 

  44. Kovalchuk, S. et al. Neutral and charged excitons interplay in non-uniformly strain-engineered WS2. 2D Mater. 7, 035024 (2020).

    Article  Google Scholar 

  45. Rudolph, J., Hey, R. & Santos, P. V. Exciton transport by surface acoustic waves. Superlattices Microstruct. 41, 293–296 (2007).

    Article  ADS  Google Scholar 

  46. Perea-Causín, R. et al. Exciton propagation and halo formation in two-dimensional materials. Nano Lett. 19, 7317–7323 (2019).

    Article  ADS  Google Scholar 

  47. Miller, D. A. B. et al. Electric field dependence of optical absorption near the band gap of quantum-well structures. Phys. Rev. B 32, 1043–1060 (1985).

    Article  ADS  Google Scholar 

  48. Aslan, O. B., Deng, M. & Heinz, T. F. Strain tuning of excitons in monolayer WSe2. Phys. Rev. B 98, 115308 (2018).

    Article  ADS  Google Scholar 

  49. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the help and support from the Lurie Nanofabrication Facility at the University of Michigan, Ann Arbor, where the device fabrication was carried out. P.B.D. acknowledges partial support of this work by the Air Force Office of Scientific Research (AFOSR) award no. FA9550-17-1-0208 and by the Army Research Office under grant no. W911NF-21-1-0207. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant no. JPMXP0112101001), and JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

P.B.D. conceived the idea and supervised the project. K.D. fabricated and characterized the devices. Z.Lyu transferred the encapsulated monolayers on the SAW devices. P.B.D., K.D. and Z.Li. analysed the data. Growth of hBN was done by T.T. and K.W. P.B.D., K.D. and Z.Li. contributed to writing the manuscript.

Corresponding author

Correspondence to Parag B. Deotare.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Andres Castellanos-Gomez and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementray Figs. 1–19, Sections 1–13 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, K., Lyu, Z., Li, Z. et al. Spatiotemporally controlled room-temperature exciton transport under dynamic strain. Nat. Photon. 16, 242–247 (2022). https://doi.org/10.1038/s41566-021-00951-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00951-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing