Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells

An Author Correction to this article was published on 25 March 2022

This article has been updated

Abstract

Strong optical absorption by a semiconductor is a highly desirable property for many optoelectronic and photovoltaic applications. The optimal thickness of a semiconductor absorber is primarily determined by its absorption coefficient. To date, this parameter has been considered as a fundamental material property, and efforts to realize thinner photovoltaics have relied on light-trapping structures that add complexity and cost. Here we demonstrate that engineering cation disorder in a ternary chalcogenide semiconductor leads to considerable absorption increase due to enhancement of the optical transition matrix elements. We show that cation-disorder-engineered AgBiS2 colloidal nanocrystals offer an absorption coefficient that is higher than other photovoltaic materials, enabling highly efficient extremely thin absorber photovoltaic devices. We report solution-processed, environmentally friendly, 30-nm-thick solar cells with short-circuit current density of 27 mA cm−2, a power conversion efficiency of 9.17% (8.85% certified) and high stability under ambient conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Absorption enhancement via cation disorder homogenization.
Fig. 2: Absorption coefficients and optical modelling.
Fig. 3: Characterization of cation configuration transition.
Fig. 4: Ultrathin AgBiS2 NC solar cells.

Similar content being viewed by others

Data availability

The experimental and computational data that support the current study are available in a public repository (https://doi.org/10.5281/zenodo.5733213). Supplementary Information data are available from the corresponding author upon reasonable request.

Code availability

The code that supports this study is available in a public repository (https://doi.org/10.5281/zenodo.5733213).

Change history

References

  1. Bernechea, M. et al. Solution-processed solar cells based on environmentally friendly AgBiS2 nanocrystals. Nat. Photon. 10, 521–525 (2016).

    Article  ADS  Google Scholar 

  2. Boles, M. A., Ling, D., Hyeon, T. & Talapin, D. V. The surface science of nanocrystals. Nat. Mater. 15, 364–364 (2016).

    Article  ADS  Google Scholar 

  3. Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater. 16, 23–34 (2017).

    Article  ADS  Google Scholar 

  4. Massiot, I., Cattoni, A. & Collin, S. Progress and prospects for ultrathin solar cells. Nat. Energy 5, 959–972 (2020).

    Article  ADS  Google Scholar 

  5. Chen, H.-L. et al. A 19.9%-efficient ultrathin solar cell based on a 205-nm-thick GaAs absorber and a silver nanostructured back mirror. Nat. Energy 4, 761–767 (2019).

    Article  ADS  Google Scholar 

  6. Adhyaksa, G. W. P., Johlin, E. & Garnett, E. C. Nanoscale back contact perovskite solar cell design for improved tandem efficiency. Nano Lett. 17, 5206–5212 (2017).

    Article  ADS  Google Scholar 

  7. Bosson, C. J. et al. Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4. J. Mater. Chem. A 5, 16672–16680 (2017).

    Article  Google Scholar 

  8. Chen, W., Dahliah, D., Rignanese, G.-M. & Hautier, G. Origin of the low conversion efficiency in Cu2ZnSnS4 kesterite solar cells: the actual role of cation disorder. Energy Environ. Sci. 14, 3567–3578 (2021).

    Article  Google Scholar 

  9. Malerba, C., Valentini, M. & Mittiga, A. Cation disorder in Cu2ZnSnS4 thin films: effect on solar cell performances. Sol. RRL 1, 1700101 (2017).

    Article  Google Scholar 

  10. Li, J. et al. Defect control for 12.5% efficiency Cu2ZnSnSe4 kesterite thin-film solar cells by engineering of local chemical environment. Adv. Mater. 32, e2005268 (2020).

    Article  Google Scholar 

  11. Zawadzki, P., Zakutayev, A. & Lany, S. Entropy-driven clustering in tetrahedrally bonded multinary materials. Phys. Rev. Appl. 3, 034007 (2015).

  12. Mohan, R. Green bismuth. Nat. Chem. 2, 336–336 (2010).

    Article  Google Scholar 

  13. Vesborg, P. C. K. & Jaramillo, T. F. Addressing the terawatt challenge: scalability in the supply of chemical elements for renewable energy. RSC Adv. 2, 7933–7947 (2012).

    Article  Google Scholar 

  14. Burgués-Ceballos, I., Wang, Y., Akgul, M. Z. & Konstantatos, G. Colloidal AgBiS2 nanocrystals with reduced recombination yield 6.4% power conversion efficiency in solution-processed solar cells. Nano Energy 75, 104961 (2020).

    Article  Google Scholar 

  15. Kopula Kesavan, J. et al. Cation disorder and local structural distortions in AgxBi1–xS2 nanoparticles. Nanomaterials 10, 316 (2020).

    Article  Google Scholar 

  16. Schnepf, R. R. et al. Utilizing site disorder in the development of new energy-relevant semiconductors. ACS Energy Lett. 5, 2027–2041 (2020).

    Article  Google Scholar 

  17. Yang, W.-C., Miskin, C. K., Carter, N. J., Agrawal, R. & Stach, E. A. Compositional inhomogeneity of multinary semiconductor nanoparticles: a case study of Cu2ZnSnS4. Chem. Mater. 26, 6955–6962 (2014).

    Article  Google Scholar 

  18. Hao, M. et al. Ligand-assisted cation-exchange engineering for high-efficiency colloidal Cs1−xFAxPbI3 quantum dot solar cells with reduced phase segregation. Nat. Energy 5, 79–88 (2020).

    Article  ADS  Google Scholar 

  19. Ju, M.-G., Dai, J., Ma, L., Zhou, Y. & Zeng, X. C. AgBiS2 as a low-cost and eco-friendly all-inorganic photovoltaic material: nanoscale morphology–property relationship. Nanoscale Adv. 2, 770–776 (2020).

    Article  ADS  Google Scholar 

  20. Viñes, F., Bernechea, M., Konstantatos, G. & Illas, F. Matildite versus schapbachite: first-principles investigation of the origin of photoactivity in AgBiS2. Phys. Rev. B 94, 235203 (2016).

    Article  ADS  Google Scholar 

  21. Guin, S. N., Banerjee, S., Sanyal, D., Pati, S. K. & Biswas, K. Origin of the order–disorder transition and the associated anomalous change of thermopower in AgBiS2 nanocrystals: a combined experimental and theoretical study. Inorg. Chem. 55, 6323–6331 (2016).

    Article  Google Scholar 

  22. Khan, M. D. et al. Electrochemical investigation of uncapped AgBiS2 (schapbachite) synthesized using in situ melts of xanthate precursors. Dalton Trans. 48, 3714–3722 (2019).

    Article  Google Scholar 

  23. Ren, X. et al. In situ exsolution of Ag from AgBiS2 nanocrystal anode boosting high-performance potassium-ion batteries. J. Mater. Chem. A 8, 15058–15065 (2020).

    Article  Google Scholar 

  24. Liu, M. et al. Hybrid organic–inorganic inks flatten the energy landscape in colloidal quantum dot solids. Nat. Mater. 16, 258–263 (2017).

    Article  ADS  Google Scholar 

  25. Kagan, C. R. & Murray, C. B. Charge transport in strongly coupled quantum dot solids. Nat. Nanotechnol. 10, 1013–1026 (2015).

    Article  ADS  Google Scholar 

  26. Wong, J., Omelchenko, S. T. & Atwater, H. A. Impact of semiconductor band tails and band filling on photovoltaic efficiency limits. ACS Energy Lett. 6, 52–57 (2021).

    Article  Google Scholar 

  27. Treharne, R. E. et al. Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J. Phys. Conf. Ser. 286, 012038 (2011).

    Article  Google Scholar 

  28. ElAnzeery, H. et al. Refractive index extraction and thickness optimization of Cu2ZnSnSe4 thin film solar cells. Phys. Status Solidi A 212, 1984–1990 (2015).

    Article  ADS  Google Scholar 

  29. Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, 1998).

  30. Manzoor, S. et al. Optical modeling of wide-bandgap perovskite and perovskite/silicon tandem solar cells using complex refractive indices for arbitrary-bandgap perovskite absorbers. Opt. Express 26, 27441–27460 (2018).

    Article  Google Scholar 

  31. Chen, C. et al. Characterization of basic physical properties of Sb2Se3 and its relevance for photovoltaics. Front. Optoelectron. 10, 18–30 (2017).

    Article  Google Scholar 

  32. Pettersson, L. A. A., Roman, L. S. & Inganäs, O. Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487–496 (1999).

    Article  ADS  Google Scholar 

  33. Centurioni, E. Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44, 7532–7539 (2005).

    Article  Google Scholar 

  34. Guillemoles, J.-F., Kirchartz, T., Cahen, D. & Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photon. 13, 501–505 (2019).

    Article  ADS  Google Scholar 

  35. Gilmore, R. H. et al. Epitaxial dimers and Auger-assisted detrapping in PbS quantum dot solids. Matter 1, 250–265 (2019).

    Article  Google Scholar 

  36. Bagus, P. S., Illas, F., Pacchioni, G. & Parmigiani, F. Mechanisms responsible for chemical shifts of core-level binding energies and their relationship to chemical bonding. J. Electron. Spectrosc. Relat. Phenom. 100, 215–236 (1999).

    Article  Google Scholar 

  37. Tambo, T. & Tatsuyama, C. XPS study on the chemical shifts of crystalline III–VI layered compounds. J. Phys. Soc. Jpn 54, 4382–4389 (1985).

    Article  ADS  Google Scholar 

  38. Akgul, M. Z., Figueroba, A., Pradhan, S., Bi, Y. & Konstantatos, G. Low-cost RoHS compliant solution processed photovoltaics enabled by ambient condition synthesis of AgBiS2 nanocrystals. ACS Photonics 7, 588–595 (2020).

    Article  Google Scholar 

  39. Hu, L. et al. Enhanced optoelectronic performance in AgBiS2 nanocrystals obtained via an improved amine-based synthesis route. J. Mater. Chem. C 6, 731–737 (2018).

    Article  Google Scholar 

  40. Oh, J. T. et al. Water-resistant AgBiS2 colloidal nanocrystal solids for eco-friendly thin film photovoltaics. Nanoscale 11, 9633–9640 (2019).

    Article  Google Scholar 

  41. Pan, H. et al. Advances in design engineering and merits of electron transporting layers in perovskite solar cells. Mater. Horiz. 7, 2276–2291 (2020).

  42. Irfan et al. Energy level evolution of air and oxygen exposed molybdenum trioxide films. Appl. Phys. Lett. 96, 243307 (2010).

    Article  ADS  Google Scholar 

  43. Yu, B.-B. et al. Heterogeneous 2D/3D Tin-halides perovskite solar cells with certified conversion efficiency breaking 14%. Adv. Mater. 33, 2102055 (2021).

  44. Jiang, X. Ultra-high open-circuit voltage of tin perovskite solar cells via an electron transporting layer design. Nat. Commun. 7, 1245 (2020).

  45. Choi, Y. C., Lee, D. U., Noh, J. H., Kim, E. K. & Seok, S. I. Highly improved Sb2S3 sensitized-inorganic–organic heterojunction solar cells and quantification of traps by deep-level transient spectroscopy. Adv. Funct. Mater. 24, 3587–3592 (2014).

    Article  Google Scholar 

  46. Wu, C. et al. Water additive enhanced solution processing of alloy Sb2(S1−xSex)3-based solar cells. Sol. RRL 4, 1900582 (2020).

    Article  Google Scholar 

  47. Huber, S. P. et al. AiiDA 1.0, a scalable computational infrastructure for automated reproducible workflows and data provenance. Sci. Data 7, 300 (2020).

    Article  Google Scholar 

  48. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  Google Scholar 

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  ADS  Google Scholar 

  52. Zunger, A., Wei, S.-H., Ferreira, L. G. & Bernard, J. E. Special quasirandom structures. Phys. Rev. Lett. 65, 353–356 (1990).

    Article  ADS  Google Scholar 

  53. van de Walle, A., Asta, M. & Ceder, G. The alloy theoretic automated toolkit: a user guide. Calphad 26, 539–553 (2002).

    Article  Google Scholar 

  54. van de Walle, A. et al. Efficient stochastic generation of special quasirandom structures. Calphad 42, 13–18 (2013).

    Article  Google Scholar 

  55. Geller, S. & Wernick, J. H. Ternary semiconducting compounds with sodium chloride-like structure: AgSbSe2, AgSbTe2, AgBiS2, AgBiSe2. Acta Crystallogr. 12, 46–54 (1959).

    Article  Google Scholar 

  56. Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    Article  ADS  Google Scholar 

  57. Borlido, P. et al. Exchange-correlation functionals for band gaps of solids: benchmark, reparametrization and machine learning. npj Comput. Mater. 6, 96 (2020).

    Article  ADS  Google Scholar 

  58. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 224106 (2006).

    Article  ADS  Google Scholar 

  59. Skelton, J. JMSkelton Transformer. https://github.com/JMSkelton/Transformer (2021).

  60. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  ADS  Google Scholar 

  61. Csonka, G. I. et al. Assessing the performance of recent density functionals for bulk solids. Phys. Rev. B 79, 155107 (2009).

    Article  ADS  Google Scholar 

  62. Diedenhofen, S. L., Bernechea, M., Felter, K. M., Grozema, F. C. & Siebbeles, L. D. A. Charge photogeneration and transport in AgBiS2 nanocrystal films for photovoltaics. Sol. RRL 3, 1900075 (2019).

    Article  Google Scholar 

  63. Cao, Y., Stavrinadis, A., Lasanta, T., So, D. & Konstantatos, G. The role of surface passivation for efficient and photostable PbS quantum dot solar cells. Nat. Energy 1, 16035 (2016).

    Article  ADS  Google Scholar 

  64. Hoye, R. L. Z. et al. Perovskite-inspired photovoltaic materials: toward best practices in materials characterization and calculations. Chem. Mater. 29, 1964–1988 (2017).

    Article  Google Scholar 

  65. Huang, Y.-T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Z. Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology 32, 132004 (2021).

    Article  ADS  Google Scholar 

  66. Zheng, Q. QijingZheng/VaspBandUnfolding. https://github.com/QijingZheng/VaspBandUnfolding (2021).

  67. Popescu, V. & Zunger, A. Extracting E versus \(\overrightarrow {k}\) effective band structure from supercell calculations on alloys and impurities. Phys. Rev. B 85, 085201 (2012).

    Article  ADS  Google Scholar 

  68. Whalley, L. D. effmass: an effective mass package. J. Open Source Softw. 3, 797 (2018).

    Article  ADS  Google Scholar 

  69. Jackson, A. J., Ganose, A. M., Regoutz, A., Egdell, R. G. & Scanlon, D. O. Galore: broadening and weighting for simulation of photoelectron spectroscopy. J. Open Source Softw. 3, 773 (2018).

    Article  ADS  Google Scholar 

  70. Nelson, R. et al. LOBSTER: local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory. J. Comput. Chem. 41, 1931–1940 (2020).

    Article  Google Scholar 

  71. Morgan, B. J. vasppy. https://doi.org/10.5281/zenodo.4460130 (2021).

  72. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source Python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

G.K. acknowledges financial support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 725165), the Fundació Joan Ribas Araquistain (FJRA), the Fundació Privada Cellex, the program CERCA, EQC2019-005797-P (AEI/FEDER UE), 2017SGR1373 and ‘Severo Ochoa’ Centre of Excellence CEX2019-000910-S funded by the Spanish State Research Agency. Y.W. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 754558. I.B.-C. acknowledges support from the Government of Catalonia’s Beatriu de Pinós postdoctoral programme (grant no. 2017BP00241). S.R.K. thanks L. Harnett-Caulfield for help with using the alloy theoretic automated toolkit software package and Y.-S. Choi for help with calculating the Madelung potentials; he also acknowledges the EPSRC Centre for Doctoral Training in the Advanced Characterisation of Materials (CDT-ACM) (EP/S023259/1) for funding a PhD studentship. A.W. and D.O.S. acknowledge the use of the UCL Kathleen High Performance Computing Facility (Kathleen@UCL), the Imperial College Research Computing Service and associated support services. By the membership of the UK’s HEC Materials Chemistry Consortium, which is funded by the EPSRC (EP/L000202, EP/R029431 and EP/T022213), this work used the ARCHER2 UK National Supercomputing Service and the UK Materials and Molecular Modelling (MMM) Hub (Thomas EP/P020194 and Young EP/T022213). D.O.S. acknowledges support from the EPSRC (EP/N01572X/1) and the European Research Council, ERC (grant no. 758345).

Author information

Authors and Affiliations

Authors

Contributions

G.K. supervised and directed the study. Y.W. and G.K. conceived the idea, designed this study and co-wrote the manuscript, with feedback from the co-authors. Y.W. synthesized the AgBiS2 NCs, performed the material characterization, fabricated and characterized the solar cells, and analysed the data, with help from I.B.-C. Y.W. performed the optical modelling. S.R.K. designed and conducted the theoretical modelling, analysed the DFT simulations, interpreted the data, provided insights and contributed to manuscript writing. D.S and A.W. supervised the theoretical modelling.

Corresponding author

Correspondence to Gerasimos Konstantatos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks Rui Zhu, Sergio Brovelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Note, Tables 1 and 2 and references.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Kavanagh, S.R., Burgués-Ceballos, I. et al. Cation disorder engineering yields AgBiS2 nanocrystals with enhanced optical absorption for efficient ultrathin solar cells. Nat. Photon. 16, 235–241 (2022). https://doi.org/10.1038/s41566-021-00950-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00950-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing