Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-coherent Fano laser based on a bound state in the continuum

A Publisher Correction to this article was published on 26 August 2021

This article has been updated

Abstract

It is an important challenge to reduce the power consumption and size of lasers, but progress has been impeded by quantum noise overwhelming the coherent radiation at reduced power levels. Thus, despite considerable progress in microscale and nanoscale lasers, such as photonic crystal lasers, metallic lasers and plasmonic lasers, the coherence length remains very limited. Here we show that a bound state in the continuum based on Fano interference can effectively quench quantum fluctuations. Although fragile in nature, this unusual state redistributes photons such that the effect of spontaneous emission is suppressed. Based on this concept, we experimentally demonstrate a microscopic laser with a linewidth that is more than 20 times smaller than existing microscopic lasers and show that further reduction by several orders of magnitude is feasible. These findings pave the way for numerous applications of microscopic lasers and point to new opportunities beyond photonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of BIC laser based on Fano resonance.
Fig. 2: Mode patterns of Fano BIC laser.
Fig. 3: Lasing characteristics of Fano BIC laser.
Fig. 4: Laser linewidth measurements.

Similar content being viewed by others

Data availability

All data in this study are available within the paper and its Supplementary Information. Further source data will be made available on reasonable request.

Code availability

The code used for modelling the data is available from Y.Y. on reasonable request.

Change history

References

  1. Schawlow, A. L. & Townes, C. H. Infrared and optical masers. Phys. Rev. 112, 1940 (1985).

    Article  ADS  Google Scholar 

  2. Henry, C. Theory of the linewidth of semiconductor lasers. IEEE J. Quantum Electron. 18, 259–264 (1982).

    Article  ADS  Google Scholar 

  3. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999).

    Article  ADS  Google Scholar 

  4. Mørk, J., Tromborg, B. & Mark, J. Chaos in semiconductor lasers with optical feedback: theory and experiment. IEEE J. Quantum Electron. 28, 93–108 (1992).

    Article  ADS  Google Scholar 

  5. Tager, A. A. & Petermann, K. High-frequency oscillations and self-mode locking in short external-cavity laser diodes. IEEE J. Quantum Electron. 30, 1553–1561 (1994).

    Article  ADS  Google Scholar 

  6. Liang, W. et al. Ultralow noise miniature external cavity semiconductor laser. Nat. Commun. 6, 7371 (2015).

    Article  ADS  Google Scholar 

  7. Stern, B., Ji, X., Dutt, A. & Lipson, M. Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator. Opt. Lett. 42, 4541–4544 (2017).

    Article  ADS  Google Scholar 

  8. Tran, M. A., Huang, D. & Bowers, J. E. Tutorial on narrow linewidth tunable semiconductor lasers using Si/III-V heterogeneous integration. APL Photon. 4, 111101 (2019).

    Article  ADS  Google Scholar 

  9. Santis, C. T., Vilenchik, Y., Satyan, N., Rakuljic, G. & Yariv, A. Quantum control of phase fluctuations in semiconductor lasers. Proc. Natl Acad. Sci. USA 115, E7896–E7904 (2018).

    Article  ADS  Google Scholar 

  10. Painter, O. et al. Two-dimensional photonic band-gap defect mode laser. Science 284, 1819–1821 (1999).

    Article  Google Scholar 

  11. Matsuo, S. et al. High-speed ultracompact buried heterostructure photonic-crystal laser with 13 fJ of energy consumed per bit transmitted. Nat. Photon. 4, 648–654 (2010).

    Article  ADS  Google Scholar 

  12. Wu, S. et al. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520, 69–72 (2015).

    Article  ADS  Google Scholar 

  13. Crosnier, G. et al. Hybrid indium phosphide-on-silicon nanolaser diode. Nat. Photon. 11, 297–300 (2017).

    Article  ADS  Google Scholar 

  14. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  ADS  Google Scholar 

  15. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  16. Bjork, G., Karlsson, A. & Yamamoto, Y. On the linewidth of microcavity lasers. Appl. Phys. Lett. 60, 304 (1992).

    Article  ADS  Google Scholar 

  17. Sun, C. et al. Single-chip microprocessor that communicates directly using light. Nature 528, 534–538 (2015).

    Article  ADS  Google Scholar 

  18. Bogaerts, W. et al. Programmable photonic circuits. Nature 586, 207–216 (2020).

    Article  ADS  Google Scholar 

  19. Ge, C. et al. External cavity laser biosensor. Lab Chip 13, 1247–1256 (2013).

    Article  Google Scholar 

  20. Carolan, J. et al. Universal linear optics. Science 349, 711–716 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  21. Shen, Y. et al. Deep learning with coherent nanophotonic circuits. Nat. Photon. 11, 441–446 (2017).

    Article  ADS  Google Scholar 

  22. Song, B.-S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005).

    Article  ADS  Google Scholar 

  23. Kim, J. et al. Narrow linewidth operation of buried-heterostructure photonic crystal nanolaser. Opt. Express 20, 11643–11651 (2012).

    Article  ADS  Google Scholar 

  24. von Neumann, J. & Wigner, E. Über merkwürdige diskrete Eigenwerte. Phys. Z. 30, 465–467 (1929).

    MATH  Google Scholar 

  25. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 16048 (2016).

    Article  ADS  Google Scholar 

  26. Plotnik, Y. et al. Experimental observation of optical bound states in the continuum. Phys. Rev. Lett. 107, 183901 (2011).

    Article  ADS  Google Scholar 

  27. Molina, M. I., Miroshnichenko, A. E. & Kivshar, Y. S. Surface bound states in the continuum. Phys. Rev. Lett. 108, 070401 (2012).

    Article  ADS  Google Scholar 

  28. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article  ADS  Google Scholar 

  29. Ha, S. T. et al. Directional lasing in resonant semiconductor nanoantenna arrays. Nat. Nanotechnol. 13, 1042–1047 (2018).

    Article  ADS  Google Scholar 

  30. Fano, U. Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961).

    Article  MATH  ADS  Google Scholar 

  31. Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257 (2010).

    Article  ADS  Google Scholar 

  32. Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photon. 11, 543–554 (2017).

    Article  Google Scholar 

  33. Suh, W., Wang, Z. & Fan, S. Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities. IEEE J. Quantum Electron. 40, 1511–1518 (2004).

    Article  ADS  Google Scholar 

  34. Tanaka, Y. et al. Dynamic control of the Q factor in a photonic crystal nanocavity. Nat. Mater. 6, 862–865 (2007).

    Article  ADS  Google Scholar 

  35. Mørk, J., Chen, Y. & Heuck, M. Photonic crystal Fano laser: terahertz modulation and ultrashort pulse generation. Phys. Rev. Lett. 113, 163901 (2014).

    Article  ADS  Google Scholar 

  36. Yu, Y., Xue, W., Semenova, E., Yvind, K. & Mørk, J. Demonstration of a self-pulsing photonic crystal Fano laser. Nat. Photon. 11, 81–84 (2017).

    Article  ADS  Google Scholar 

  37. Rybin, M. & Kivshar, Y. Supercavity lasing. Nature 541, 164–165 (2017).

    Article  ADS  Google Scholar 

  38. Hodaei, H. et al. Parity-time-symmetric microring lasers. Science 346, 975–978 (2014).

    Article  ADS  Google Scholar 

  39. Sakanas, A., Semenova, E., Ottaviano, L., Mørk, J. & Yvind, K. Comparison of processing-induced deformations of InP bonded to Si determined by e-beam metrology: direct vs. adhesive bonding. Microelectron. Eng. 214, 93–99 (2019).

    Article  Google Scholar 

  40. Tsai, C.-C., Mower, J. & Englund, D. Directional free-space coupling from photonic crystal waveguides. Opt. Express 19, 20586 (2011).

    Article  ADS  Google Scholar 

  41. Lalanne, P., Sauvan, C. & Hugonin, J. P. Photon confinement in photonic crystal nanocavities. Laser Photon. Rev. 2, 514–526 (2008).

    Article  ADS  Google Scholar 

  42. Xue, W. et al. Threshold characteristics of slow-light photonic crystal lasers. Phys. Rev. Lett. 116, 063901 (2016).

    Article  ADS  Google Scholar 

  43. Okoshi, T., Kikuchi, K. & Nakayama, A. Novel method for high resolution measurement of laser output spectrum. Electron. Lett. 16, 630–631 (1980).

    Article  ADS  Google Scholar 

  44. Mercer, L. B. 1/f frequency noise effects on self-heterodyne linewidth measurements. J. Lightwave Technol. 9, 485–493 (1991).

    Article  ADS  Google Scholar 

  45. Bagheri, M. et al. Linewidth and modulation response of two-dimensional microcavity photonic crystal lattice defect lasers. IEEE Photon. Technol. Lett. 18, 1161–1163 (2006).

    Article  ADS  Google Scholar 

  46. Konoike, R. et al. On-demand transfer of trapped photons on a chip. Sci. Adv. 2, e1501690 (2016).

    Article  ADS  Google Scholar 

  47. Sato, Y. et al. Strong coupling between distant photonic nanocavities and its dynamic control. Nat. Photon. 6, 56–61 (2012).

    Article  ADS  Google Scholar 

  48. Piels, M. et al. Laser rate equation-based filtering for carrier recovery in characterization and communication. J. Lightwave Technol. 33, 3271–3279 (2015).

    Article  ADS  Google Scholar 

  49. Seimetz, M. Laser linewidth limitations for optical systems with high-order modulation employing feed forward digital carrier phase estimation. In Proc. Optical Fiber Communication Conference/National Fiber Optic Engineers Conference OTuM2 (Optical Society of America, 2008).

  50. Lončar, M., Scherer, A. & Qiu, Y. Photonic crystal laser sources for chemical detection. Appl. Phys. Lett. 82, 4648–4650 (2003).

    Article  ADS  Google Scholar 

  51. Watanabe, T. et al. Ion-sensitive photonic-crystal nanolaser sensors. Opt. Express 25, 24469 (2017).

    Article  ADS  Google Scholar 

  52. Birowosuto, M. D. et al. Movable high-Q nanoresonators realized by semiconductor nanowires on a Si photonic crystal platform. Nat. Mater. 13, 279–285 (2014).

    Article  ADS  Google Scholar 

  53. Lu, F. et al. Nanopillar quantum well lasers directly grown on silicon and emitting at silicon-transparent wavelengths. Optica 4, 717–723 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank K. S. Mathiesen for assistance with sample fabrication and characterization and M. Xiong for inductively coupled plasma etching optimization and assistance with sample characterization. This work was supported by the Danish National Research Foundation through NanoPhoton – Center for Nanophotonics (grant no. DNRF147), the European Research Council (ERC) under the European Union Horizon 2020 Research and Innovation Programme (grant no. 834410 Fano) and Villum Fonden though the NATEC Center (grant no. 8692).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y., A.R.Z. and J.M. developed the theory. Y.Y. established the importance of the quality factor of the Fano BIC mode. Y.Y. and A.R.Z. performed the phase noise simulations. Y.Y. designed the Fano BIC laser. A.S., E.S. and K.Y. developed the BH nanofabrication technology. A.S. fabricated the devices with the assistance of Y.Y., Y.Y. performed the measurements with the assistance of A.S., and Y.Y. analysed the results. J.M. initiated and supervised the project. J.M. and Y.Y. planned the research. Y.Y. and J.M. wrote the manuscript. All authors commented on the manuscript.

Corresponding authors

Correspondence to Yi Yu or Jesper Mørk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Yeshaiahu Fainman, Andrey Miroshnichenko and Fabrice Raineri for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Notes A–D and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Y., Sakanas, A., Zali, A.R. et al. Ultra-coherent Fano laser based on a bound state in the continuum. Nat. Photon. 15, 758–764 (2021). https://doi.org/10.1038/s41566-021-00860-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00860-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing