Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The pure-quartic soliton laser


Ultrashort pulse generation hinges on the careful management of dispersion. Traditionally, this has exclusively involved second-order dispersion, with higher-order dispersion treated as a nuisance to be minimized. Here, we show that this higher-order dispersion can be strategically leveraged to access an uncharted regime of ultrafast laser operation. In particular, our mode-locked laser—with an intracavity spectral pulse shaper—emits pure-quartic soliton pulses that arise from the interaction of fourth-order dispersion and the Kerr nonlinearity. Phase-resolved measurements demonstrate that their pulse energy scales with the third power of the inverse pulse duration. This implies a strong increase in the energy of short pure-quartic solitons compared with conventional solitons, for which the energy scales as the inverse of the pulse duration. These results not only demonstrate a novel approach to ultrafast lasers, but more fundamentally, they clarify the use of higher-order dispersion for optical pulse control, enabling innovations in nonlinear optics and its applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The principle of operation of the PQS laser.
Fig. 2: Conventional soliton and PQS regimes.
Fig. 3: Sideband analysis.
Fig. 4: Measured energy-width scaling properties of the emitted PQS pulses for different values of applied quartic dispersion.

Data availability

The data that support the plots in this paper and other findings of this study are available from the corresponding author on reasonable request.


  1. 1.

    Mollenauer, L. F., Evangelides, S. G. & Haus, H. A. Long distance soliton propagation using lumped amplifiers and dispersion shifted fiber. J. Lightwave Technol. 9, 194–197 (1991).

    ADS  Google Scholar 

  2. 2.

    Mollenauer, L. F. et al. Demonstration of error-free soliton transmission at 2.5 Gbit/s over more than 14,000 km. Electron. Lett. 27, 2055–2056 (1991).

    ADS  Google Scholar 

  3. 3.

    Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423–444 (1996).

    ADS  Google Scholar 

  4. 4.

    Husakou, A. V. & Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001).

    ADS  Google Scholar 

  5. 5.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Google Scholar 

  6. 6.

    Xu, C. & Wise, F. W. Recent advances in fibre lasers for nonlinear microscopy. Nat. Photon. 7, 875–882 (2013).

    ADS  Google Scholar 

  7. 7.

    Cundiff, S. T. & Ye, J. Colloquium femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    ADS  Google Scholar 

  8. 8.

    Jung, I. D. et al. Self-starting 6.5-fs pulses from a Ti:sapphire laser. Opt. Lett. 22, 1009–1011 (1997).

    ADS  Google Scholar 

  9. 9.

    Mollenauer, L. F. & Stolen, R. H. The soliton laser. Opt. Lett. 9, 13–15 (1984).

    ADS  Google Scholar 

  10. 10.

    Kafka, J. D., Baer, T. & Hall, D. W. Mode-locked erbium-doped fiber laser with soliton pulse shaping. Opt. Lett. 14, 1269–1271 (1989).

    ADS  Google Scholar 

  11. 11.

    Matsas, V. J., Newson, T. P. & Zervas, M. N. Self-starting passively mode-locked fibre ring laser exploiting nonlinear polarisation switching. Opt. Commun. 92, 61–66 (1992).

    ADS  Google Scholar 

  12. 12.

    Zakharov, V. E. & Shabat, A. B. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972).

    ADS  MathSciNet  Google Scholar 

  13. 13.

    Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    ADS  Google Scholar 

  14. 14.

    Kelly, S. M. J. Characteristic sideband instability of periodically amplified average soliton. Electron. Lett. 28, 806–808 (1992).

    ADS  Google Scholar 

  15. 15.

    Chong, A., Buckley, J., Renninger, W. & Wise, F. All-normal-dispersion femtosecond fiber laser. Opt. Express 14, 10095–10100 (2006).

    ADS  Google Scholar 

  16. 16.

    Regelskis, K., Želudevičius, J., Viskontas, K. & Račiukaitis, G. Ytterbium-doped fiber ultrashort pulse generator based on self-phase modulation and alternating spectral filtering. Opt. Lett. 40, 5255–5258 (2015).

    ADS  Google Scholar 

  17. 17.

    Zhou, J. et al. Pulse evolution in a broad-bandwidth Ti:sapphire laser. Opt. Lett. 19, 1149–1151 (1994).

    ADS  Google Scholar 

  18. 18.

    Christov, I., Murnane, M. N., Kapteyn, H. C., Zhou, J. & Huang, C.-P. Fourth-order dispersion-limited solitary pulses. Opt. Lett. 19, 1465–1467 (1994).

    ADS  Google Scholar 

  19. 19.

    Höök, A. & Karlsson, M. Ultrashort solitons at the minimum-dispersion wavelength: effects of fourth-order dispersion. Opt. Lett. 18, 1388–1390 (1993).

    ADS  Google Scholar 

  20. 20.

    Kodama, Y., Romagnoli, M., Wabnitz, S. & Midrio, M. Role of third-order dispersion on soliton instabilities and interactions in optical fibers. Opt. Lett. 19, 165–167 (1994).

    ADS  Google Scholar 

  21. 21.

    Blow, K. J., Doran, N. J. & Wood, D. Generation and stabilization of short soliton pulses in the amplified nonlinear Schrödinger equation. J. Opt. Soc. Am. B 5, 381–391 (1988).

    ADS  Google Scholar 

  22. 22.

    Karlsson, M. & Höök, A. Soliton-like pulses governed by fourth order dispersion in optical fibers. Opt. Commun. 104, 303–307 (1994).

    ADS  Google Scholar 

  23. 23.

    Akhmediev, N., Buryak, A. V. & Karlsson, M. Radiationless optical solitons with oscillating tails. Opt. Commun. 110, 540–544 (1994).

    ADS  Google Scholar 

  24. 24.

    Roy, S. & Biancalana, F. Formation of quartic solitons and a localized continuum in silicon-based waveguides. Phys. Rev. A 87, 025801 (2013).

    ADS  Google Scholar 

  25. 25.

    Blanco-Redondo, A. et al. Pure-quartic solitons. Nat. Commun. 7, 10427 (2016).

    ADS  Google Scholar 

  26. 26.

    Lo, C. W., Stefani, A., de Sterke, C. M. & Blanco-Redondo, A. Analysis and design of fibers for pure-quartic solitons. Opt. Express 26, 7786–7796 (2018).

    ADS  Google Scholar 

  27. 27.

    Tam, K. K. K., Alexander, T. J., Blanco-Redondo, A. & de Sterke, C. M. Stationary and dynamical properties of pure-quartic solitons. Opt. Lett. 44, 3306–3309 (2019).

    ADS  Google Scholar 

  28. 28.

    Taheri, H. & Matsko, A. B. Quartic dissipative solitons in optical Kerr cavities. Opt. Lett. 44, 3086–3089 (2019).

    ADS  Google Scholar 

  29. 29.

    Knox, F. M., Forysiak, W. & Doran, N. J. 10 gbit/s soliton communication systems over standard fibre at 1.55 m and the use of dispersion compensation. IEEE J. Lightwave Technol. 13, 1955–1962 (1994).

    ADS  Google Scholar 

  30. 30.

    Turitsyn, S. K., Bale, B. G. & Fedoruk, M. P. Dispersion-managed solitons in fibre systems and lasers. Phys. Rep. 521, 135–203 (2012).

    ADS  Google Scholar 

  31. 31.

    Agrawal, G. P. Nonlinear Fibre Optics (Academic Press, 1995).

  32. 32.

    Schröder, J., Coen, S., Sylvestre, Th. & Eggleton, B. J. Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper. Opt. Express 18, 22715–22721 (2010).

    ADS  Google Scholar 

  33. 33.

    Peng, J. & Boscolo, S. Filter-based dispersion-managed versatile ultrafast fibre laser. Sci. Rep. 6, 25995 (2016).

    ADS  Google Scholar 

  34. 34.

    Dorrer, C. & Kang, I. Simultaneous temporal characterization of telecommunication optical pulses and modulators by use of spectrograms. Opt. Lett. 27, 1315–1317 (2002).

    ADS  Google Scholar 

  35. 35.

    Hammani, K. et al. Peregrine soliton generation and breakup in standard telecommunications fiber. Opt. Lett. 36, 112–114 (2011).

    ADS  Google Scholar 

  36. 36.

    Ito, T., Slezak, O., Yoshita, M., Akiyama, H. & Kobayashi, Y. High-precision group-delay dispersion measurements of optical fibers via fingerprint-spectral wavelength-to-time mapping. Photon. Res. 4, 13–16 (2016).

    Google Scholar 

  37. 37.

    Oktem, B., Ülgüdür, C. & Ilday, F. Ö. Soliton–similariton fibre laser. Nat. Photon. 4, 307–311 (2010).

    Google Scholar 

  38. 38.

    Woodward, R. I. Dispersion engineering of mode-locked fibre laser. J. Opt. 20, 033002 (2018).

    ADS  Google Scholar 

  39. 39.

    Dennis, M. L. & Duling, I. N. Experimental study of sideband generation in femtosecond fiber lasers. IEEE J. Quant. Elect. 30, 1469–1477 (1994).

    ADS  Google Scholar 

  40. 40.

    Tamura, K., Ippen, E. P., Haus, H. A. & Nelson, L. E. 77-fs Pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993).

    ADS  Google Scholar 

  41. 41.

    Chen, Y. et al. Dispersion-managed mode locking. J. Opt. Soc. Am. B 16, 1999–2004 (1999).

    ADS  Google Scholar 

  42. 42.

    Blanco-Redondo, A., de Sterke, C. M., Husko, C. & Eggleton, B. J. High-energy ultra-short pulses from pure-quartic solitons. In 2017 European Conference on Lasers and Electro-Optics and European Quantum Electronics Conference EE_3_2 (Optical Society of America, 2017).

  43. 43.

    Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    ADS  Google Scholar 

  44. 44.

    Trebino, R. Frequency-Resolved Optical Gating: The Measurement of Ultrashort Laser Pulses (Springer, 2000).

Download references


This work was supported by the Australian Research Council (ARC) Discovery Project (grant no. DP180102234), the University of Sydney Professor Harry Messel Research Fellowship and the Asian Office of Aerospace R&D (AOARD) (grant no. FA2386-19-1-4067).

Author information




A.B.-R., C.M.d.S. and D.D.H. conceived the idea of the PQS laser. A.F.J.R., D.D.H. and A.B.-R. designed the experiment. A.F.J.R. performed the experiments and the numerical simulations. K.K.K.T. and C.M.d.S. carried out the theoretical analysis. C.M.d.S. and A.B.-R. supervised the overall project. All the authors contributed to the interpretation of data and wrote the manuscript.

Corresponding author

Correspondence to Antoine F. J. Runge.

Ethics declarations

Competing interests

A.F.J.R., D.D.H., C.M.d.S. and A.B.-R. have submitted a provisional patent application based on the ideas presented in this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Discussion and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Runge, A.F.J., Hudson, D.D., Tam, K.K.K. et al. The pure-quartic soliton laser. Nat. Photonics 14, 492–497 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing