Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Temporal walk-off induced dissipative quadratic solitons

Abstract

A plethora of applications have recently motivated extensive efforts regarding the generation of Kerr solitons and coherent frequency combs. However, the Kerr (cubic) nonlinearity is inherently weak. By contrast, strong quadratic nonlinearity in optical resonators is expected to provide a promising alternative means for soliton formation. Here we demonstrate dissipative quadratic soliton formation via non-stationary optical parametric amplification in the presence of pronounced temporal walk-off between pump and signal, leading to half-harmonic generation accompanied by a substantial pulse compression (exceeding a factor of 40) supported at low pump pulse energies (~4 pJ). The quadratic soliton forms in a low-finesse cavity in both normal and anomalous dispersion regimes. We present a route to considerably improve the performance of the demonstrated quadratic soliton when extended to an integrated platform to realize highly efficient extreme pulse compression, leading to the formation of few-cycle soliton pulses starting from ultra-low-energy picosecond-scale pump pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Walk-off-induced quadratic soliton formation process.
Fig. 2: Cavity detuning dependence of doubly-resonant OPO and its impact on synchronization.
Fig. 3: Spectral and temporal characteristics of the quadratic soliton.
Fig. 4: Soliton and box-pulse regimes.
Fig. 5: Dispersion engineering and efficient half-harmonic soliton pulse compression.
Fig. 6: Comparison of existing approaches to quadratic and cubic nonlinearity-mediated pulse compression.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available at https://doi.org/10.6084/m9.figshare.17040335.

Code availability

The codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).

    Article  Google Scholar 

  2. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).

    Article  ADS  Google Scholar 

  3. Dutt, A. et al. On-chip dual-comb source for spectroscopy. Sci. Adv. 4, e1701858 (2018).

    Article  ADS  Google Scholar 

  4. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photon. 12, 209–214 (2018).

    Article  ADS  Google Scholar 

  5. Suh, M.-G. et al. Searching for exoplanets using a microresonator astrocomb. Nat. Photon. 13, 25–30 (2019).

    Article  ADS  Google Scholar 

  6. Obrzud, E. et al. A microphotonic astrocomb. Nat. Photon. 13, 31–35 (2019).

    Article  ADS  Google Scholar 

  7. Stern, L. et al. Direct Kerr frequency comb atomic spectroscopy and stabilization. Sci. Adv. 6, eaax6230 (2020).

    Article  ADS  Google Scholar 

  8. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  ADS  Google Scholar 

  9. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  ADS  Google Scholar 

  10. Ji, X. et al. Chip-based frequency comb sources for optical coherence tomography. Opt. Express 27, 19896–19905 (2019).

    Article  ADS  Google Scholar 

  11. Marin-Palomo, P. et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature 546, 274–279 (2017).

    Article  ADS  Google Scholar 

  12. Xu, X. et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021).

    Article  ADS  Google Scholar 

  13. Lu, J. et al. Ultralow-threshold thin-film lithium niobate optical parametric oscillator. Optica 8, 539–544 (2021).

    Article  ADS  Google Scholar 

  14. Xue, X., Zheng, X. & Zhou, B. Super-efficient temporal solitons in mutually coupled optical cavities. Nat. Photon. 13, 616–622 (2019).

    Article  ADS  Google Scholar 

  15. Xue, X., Wang, P.-H., Xuan, Y., Qi, M. & Weiner, A. M. Microresonator Kerr frequency combs with high conversion efficiency. Laser Photon. Rev. 11, 1600276 (2017).

    Article  ADS  Google Scholar 

  16. Bao, C. et al. Nonlinear conversion efficiency in Kerr frequency comb generation. Opt. Lett. 39, 6126–6129 (2014).

    Article  ADS  Google Scholar 

  17. Obrzud, E., Lecomte, S. & Herr, T. Temporal solitons in microresonators driven by optical pulses. Nat. Photon. 11, 600–607 (2017).

    Article  Google Scholar 

  18. Bao, H. et al. Laser cavity-soliton microcombs. Nat. Photon. 13, 384–389 (2019).

    Article  ADS  Google Scholar 

  19. Stern, B., Ji, X., Okawachi, Y., Gaeta, A. L. & Lipson, M. Battery-operated integrated frequency comb generator. Nature 562, 401–405 (2018).

    Article  ADS  Google Scholar 

  20. Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).

    Article  ADS  Google Scholar 

  21. Moille, G. et al. Ultra-broadband Kerr microcomb through soliton spectral translation. Nat. Commun. 12, 1–9.

  22. Bruch, A. W. et al. Pockels soliton microcomb. Nat. Photon. 15, 53–58 (2021).

    Article  MathSciNet  Google Scholar 

  23. Mosca, S. et al. Direct generation of optical frequency combs in χ(2) nonlinear cavities. Nanophotonics 5, 316–331 (2016).

    Article  Google Scholar 

  24. Mosca, S. et al. Modulation instability induced frequency comb generation in a continuously pumped optical parametric oscillator. Phys. Rev. Lett. 121, 093903 (2018).

    Article  ADS  Google Scholar 

  25. Parra-Rivas, P., Gelens, L., Hansson, T., Wabnitz, S. & Leo, F. Frequency comb generation through the locking of domain walls in doubly resonant dispersive optical parametric oscillators. Opt. Lett. 44, 2004–2007 (2019).

    Article  ADS  Google Scholar 

  26. Leo, F. et al. Walk-off-induced modulation instability, temporal pattern formation, and frequency comb generation in cavity-enhanced second-harmonic generation. Phys. Rev. Lett. 116, 033901 (2016).

    Article  ADS  Google Scholar 

  27. Nie, M., Xie, Y. & Huang, S.-W. Deterministic generation of parametrically driven dissipative Kerr soliton. Nanophotonics 10, 1691–1699 (2021).

    Article  Google Scholar 

  28. Nie, M. & Huang, S.-W. Quadratic soliton mode-locked degenerate optical parametric oscillator. Opt. Lett. 45, 2311–2314 (2020).

    Article  ADS  Google Scholar 

  29. Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6–6.1-μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).

    Article  ADS  Google Scholar 

  30. Jankowski, M. et al. Temporal simultons in optical parametric oscillators. Phys. Rev. Lett. 120, 053904 (2018).

    Article  ADS  Google Scholar 

  31. Cole, D. C. et al. Kerr-microresonator solitons from a chirped background. Optica 5, 1304–1310 (2018).

    Article  ADS  Google Scholar 

  32. Jang, J. K., Erkintalo, M., Coen, S. & Murdoch, S. G. Temporal tweezing of light through the trapping and manipulation of temporal cavity solitons. Nat. Commun. 6, 7370 (2015).

    Article  ADS  Google Scholar 

  33. Erkintalo, M., Murdoch, S. G. & Coen, S. Phase and intensity control of dissipative Kerr cavity solitons. J. R. Soc. New Zealand https://doi.org/10.1080/03036758.2021.1900296 (2021).

  34. Englebert, N., Arabí, C. M., Parra-Rivas, P., Gorza, S.-P. & Leo, F. Temporal solitons in a coherently driven active resonator. Nat. Photon 15, 536–541 (2021).

    Article  ADS  Google Scholar 

  35. Akhmediev, N. & Ankiewicz, A. Dissipative Solitons: from Optics to Biology and Medicine, Vol. 751 (Springer Science & Business Media, 2008).

  36. Hamerly, R. et al. Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators. Phys. Rev. A 94, 063809 (2016).

    Article  ADS  Google Scholar 

  37. Langrock, C. & Fejer, M. M. Fiber-feedback continuous-wave and synchronously-pumped singly-resonant ring optical parametric oscillators using reverse-proton-exchanged periodically-poled lithium niobate waveguides. Opt. Lett. 32, 2263–2265 (2007).

    Article  ADS  Google Scholar 

  38. Marandi, A., Langrock, C., Fejer, M. M. & Byer, R. L. Guided-wave half-harmonic generation of frequency combs with 75-fold spectral broadening. In Proc. Nonlinear Optics, NM1A–2 (Optical Society of America, 2015).

  39. Akhmanov, S. et al. Nonstationary nonlinear optical effects and ultrashort light pulse formation. IEEE J. Quantum Electron. 4, 598–605 (1968).

    Article  ADS  Google Scholar 

  40. Khaydarov, J. D. V., Andrews, J. H. & Singer, K. D. Pulse-compression mechanism in a synchronously pumped optical parametric oscillator. J. Opt. Soc. Am. B 12, 2199–2208 (1995).

    Article  ADS  Google Scholar 

  41. Ledezma, L. et al. Intense optical parametric amplification in dispersion engineered nanophotonic lithium niobate waveguides. Preprint at https://arxiv.org/abs2104.08262 (2021).

  42. Roy, A., Jahani, S., Langrock, C., Fejer, M. & Marandi, A. Spectral phase transitions in optical parametric oscillators. Nat. Commun. 12, 835 (2021).

    Article  ADS  Google Scholar 

  43. Gatti, A. & Lugiato, L. Quantum images and critical fluctuations in the optical parametric oscillator below threshold. Phys. Rev. A 52, 1675–1690 (1995).

    Article  ADS  Google Scholar 

  44. Trillo, S. Bright and dark simultons in second-harmonic generation. Opt. Lett. 21, 1111–1113 (1996).

    Article  ADS  Google Scholar 

  45. Jankowski, M. et al. Ultrabroadband nonlinear optics in nanophotonic periodically poled lithium niobate waveguides. Optica 7, 40–46 (2020).

    Article  ADS  Google Scholar 

  46. Jankowski, M. et al. Efficient octave-spanning parametric down-conversion at the picojoule level. Preprint at https://arxiv.org/abs/2104.07928 (2021).

  47. Dietrich, C. M. et al. Higher-order dispersion and the spectral behavior in a doubly resonant optical parametric oscillator. Opt. Lett. 45, 5644–5647 (2020).

    Article  ADS  Google Scholar 

  48. Lilienfein, N. et al. Temporal solitons in free-space femtosecond enhancement cavities. Nat. Photon. 13, 214–218 (2019).

    Article  ADS  Google Scholar 

  49. Lefort, L., Puech, K., Butterworth, S. D., Svirko, Y. P. & Hanna, D. C. Generation of femtosecond pulses from order-of-magnitude pulse compression in a synchronously pumped optical parametric oscillator based on periodically poled lithium niobate. Opt. Lett. 24, 28–30 (1999).

    Article  ADS  Google Scholar 

  50. Colman, P. et al. Temporal solitons and pulse compression in photonic crystal waveguides. Nat. Photon. 4, 862–868 (2010).

    Article  ADS  Google Scholar 

  51. Choi, J. W., Sohn, B.-U., Chen, G. F. R., Ng, D. K. T. & Tan, D. T. H. Soliton-effect optical pulse compression in CMOS-compatible ultra-silicon-rich nitride waveguides. APL Photonics 4, 110804 (2019).

    Article  ADS  Google Scholar 

  52. Wang, C., Zhang, M., Stern, B., Lipson, M. & Lončar, M. Nanophotonic lithium niobate electro-optic modulators. Opt. Express 26, 1547–1555 (2018).

    Article  ADS  Google Scholar 

  53. Ru, Q. et al. Self-referenced octave-wide subharmonic GaP optical parametric oscillator centered at 3 μm and pumped by an Er-fiber laser. Opt. Lett. 42, 4756–4759 (2017).

    Article  ADS  Google Scholar 

  54. Englebert, N. et al. Parametrically driven Kerr cavity solitons. Nat. Photon. 15, 857–861 (2021).

    Article  ADS  Google Scholar 

  55. O’Donnell, C. F., Kumar, S. C., Paoletta, T. & Ebrahim-Zadeh, M. Widely tunable femtosecond soliton generation in a fiber-feedback optical parametric oscillator. Optica 7, 426–433 (2020).

    Article  ADS  Google Scholar 

  56. Dong, X., Yang, Q., Spiess, C., Bucklew, V. G. & Renninger, W. H. Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett. 125, 033902 (2020).

    Article  ADS  Google Scholar 

  57. Chen, Y. et al. Dispersion-ÿmanaged mode locking. J. Opt. Soc. Am. B 16, 1999–2004 (1999).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge support from AFOSR award no. FA9550-20-1-0040 (to A.M.), NSF grant no. 1846273 (to A.M.) and NASA (to A.M.). We also thank NTT Research for their financial and technical support. We thank R. Gray for his valuable input.

Author information

Authors and Affiliations

Authors

Contributions

A.R. performed the experiments with help from R.N. A.R. and L.L. developed the theory and performed the numerical simulations. C.L. fabricated the PPLN waveguide used in the experiment, with supervision from M.F. All authors contributed to analysis of the results. A.R. and A.M. wrote the manuscript with input from all authors. A.M. supervised the project.

Corresponding author

Correspondence to Alireza Marandi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Figs. 1–16 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., Nehra, R., Jahani, S. et al. Temporal walk-off induced dissipative quadratic solitons. Nat. Photon. 16, 162–168 (2022). https://doi.org/10.1038/s41566-021-00942-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00942-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing