Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structured illumination microscopy using a photonic chip


Structured illumination microscopy (SIM) enables live-cell super-resolution imaging of subcellular structures at high speeds. At present, linear SIM uses free-space optics to illuminate the sample with the desired light patterns; however, such arrangements are prone to misalignment and add cost and complexity to the microscope. Here, we present an alternative photonic chip-based two-dimensional SIM approach (cSIM) in which the conventional glass sample slide in a microscope is replaced by a planar photonic chip that importantly both holds and illuminates the specimen. The photonic chip reduces the footprint of the light illumination path of SIM to around 4 × 4 cm2. An array of optical waveguides on the chip creates standing wave interference patterns at different angles, which illuminate the sample via evanescent fields. High-refractive-index silicon nitride waveguides allow a 2.3 times enhancement in imaging spatial resolution, exceeding the usual 2 times limit of SIM. In summary, cSIM offers a simple, stable and affordable approach for performing two-dimensional super-resolution imaging over a large field of view.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The concept.
Fig. 2: Waveguide designs for cSIM.
Fig. 3: cSIM imaging.
Fig. 4: cSIM imaging of biological specimens.
Fig. 5: cSIM with increased resolution.

Data availability

The data associated with the figures and Supplementary information can be obtained at

Code availability

The SIM reconstructions in Figs. 3 and 4 and in Supplementary Fig. 11 were performed using FAIR SIM, an open source code available at The SIM reconstructions in Fig. 5 were performed using code provided by R. Heintzmann at the Friedrich-Schiller-University Jena, Germany.


  1. 1.

    Goodman, J. W. Introduction to Fourier Optics (W. H. Freeman, 2005).

  2. 2.

    Pawley, J. Handbook of Biological Confocal Microscopy (Springer, 2010).

  3. 3.

    Eggeling, C., Willig, K. I., Sahl, S. J. & Hell, S. W. Lens-based fluorescence nanoscopy. Q. Rev. Biophys. 48, 178–243 (2015).

    Article  Google Scholar 

  4. 4.

    Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    ADS  Article  Google Scholar 

  5. 5.

    Willig, K. I., Rizzoli, S. O., Westphal, V., Jahn, R. & Hell, S. W. STED microscopy reveals that synaptotagmin remains clustered after synaptic vesicle exocytosis. Nature 440, 935–939 (2006).

    ADS  Article  Google Scholar 

  6. 6.

    Rust, M. J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793 (2006).

    Article  Google Scholar 

  7. 7.

    Heilemann, M. et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew. Chem. Int. Ed. 47, 6172–6176 (2008).

    Article  Google Scholar 

  8. 8.

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    ADS  Article  Google Scholar 

  9. 9.

    Gustafsson, M. G. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000).

    Article  Google Scholar 

  10. 10.

    Heintzmann, R. & Cremer, C. G. Laterally Modulated Excitation Microscopy: Improvement of Resolution by using a Diffraction Grating Vol. 3568 EBO (SPIE, 1999).

  11. 11.

    Sahl, S. J., Hell, S. W. & Jakobs, S. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Biol. 18, 685–701 (2017).

    Article  Google Scholar 

  12. 12.

    Yeh, L.-H., Chowdhury, S., Repina, N. A. & Waller, L. Speckle-structured illumination for 3D phase and fluorescence computational microscopy. Biomed. Opt. Express 10, 3635–3653 (2019).

    Article  Google Scholar 

  13. 13.

    Mudry, E. et al. Structured illumination microscopy using unknown speckle patterns. Nat. Photon. 6, 312–315 (2012).

    ADS  Article  Google Scholar 

  14. 14.

    Ayuk, R. et al. Structured illumination fluorescence microscopy with distorted excitations using a filtered blind-SIM algorithm. Opt. Lett. 38, 4723–4726 (2013).

    ADS  Article  Google Scholar 

  15. 15.

    Jost, A. et al. Optical sectioning and high resolution in single-slice structured illumination microscopy by thick slice blind-SIM reconstruction. PLoS ONE 10, e0132174 (2015).

    Article  Google Scholar 

  16. 16.

    Heintzmann, R., Jovin, T. M. & Cremer, C. Saturated patterned excitation microscopy—a concept for optical resolution improvement. J. Opt. Soc. Am. A 19, 1599–1609 (2002).

    ADS  Article  Google Scholar 

  17. 17.

    Gustafsson, M. G. L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc. Natl Acad. Sci. USA 102, 13081–13086 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    Rego, E. H. et al. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc. Natl Acad. Sci. USA 109, E135–E143 (2012).

    Article  Google Scholar 

  19. 19.

    Li, D. et al. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science 349, aab3500 (2015).

    Article  Google Scholar 

  20. 20.

    Cragg, G. E. & So, P. T. C. Lateral resolution enhancement with standing evanescent waves. Opt. Lett. 25, 46–48 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    Chung, E., Kim, D. & So, P. T. Extended resolution wide-field optical imaging: objective-launched standing-wave total internal reflection fluorescence microscopy. Opt. Lett. 31, 945–947 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    Kner, P., Chhun, B. B., Griffis, E. R., Winoto, L. & Gustafsson, M. G. L. Super-resolution video microscopy of live cells by structured illumination. Nat. Methods 6, 339–342 (2009).

    Article  Google Scholar 

  23. 23.

    Grandin, H. M., Stadler, B., Textor, M. & Voros, J. Waveguide excitation fluorescence microscopy: a new tool for sensing and imaging the biointerface. Biosens. Bioelectron. 21, 1476–1482 (2006).

    Article  Google Scholar 

  24. 24.

    Agnarsson, B., Ingthorsson, S., Gudjonsson, T. & Leosson, K. Evanescent-wave fluorescence microscopy using symmetric planar waveguides. Opt. Express 17, 5075–5082 (2009).

    ADS  Article  Google Scholar 

  25. 25.

    Agnarsson, B., Jonsdottir, A. B., Arnfinnsdottir, N. B. & Leosson, K. On-chip modulation of evanescent illumination and live-cell imaging with polymer waveguides. Opt. Express 19, 22929–22935 (2011).

    ADS  Article  Google Scholar 

  26. 26.

    Diekmann, R. et al. Chip-based wide field-of-view nanoscopy. Nat. Photon. 11, 322–328 (2017).

    ADS  Article  Google Scholar 

  27. 27.

    Helle, Ø. I., Coucheron, D. A., Tinguely, J.-C., Øie, C. I. & Ahluwalia, B. S. Nanoscopy on-a-chip: super-resolution imaging on the millimeter scale. Opt. Express 27, 6700–6710 (2019).

    ADS  Article  Google Scholar 

  28. 28.

    Tinguely, J.-C., Helle, Ø. I. & Ahluwalia, B. S. Silicon nitride waveguide platform for fluorescence microscopy of living cells. Opt. Express 25, 27678–27690 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    Fu, Y., Ye, T., Tang, W. & Chu, T. Efficient adiabatic silicon-on-insulator waveguide taper. Photon. Res. 2, A41–A44 (2014).

    Article  Google Scholar 

  30. 30.

    Harris, N. C. et al. Efficient, compact and low loss thermo-optic phase shifter in silicon. Opt. Express 22, 10487–10493 (2014).

    ADS  Article  Google Scholar 

  31. 31.

    van de Linde, S. et al. Direct stochastic optical reconstruction microscopy with standard fluorescent probes. Nat. Protoc. 6, 991–1009 (2011).

    Article  Google Scholar 

  32. 32.

    Wei, F. & Liu, Z. Plasmonic structured illumination microscopy. Nano Lett. 10, 2531–2536 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Wei, F. et al. Wide field super-resolution surface imaging through plasmonic structured illumination microscopy. Nano Lett. 14, 4634–4639 (2014).

    ADS  Article  Google Scholar 

  34. 34.

    Archetti, A. et al. Waveguide-PAINT offers an open platform for large field-of-view super-resolution imaging. Nat. Commun. 10, 1267 (2019).

    ADS  Article  Google Scholar 

  35. 35.

    Liu, X. et al. Fluorescent nanowire ring illumination for wide-field far-field subdiffraction imaging. Phys. Rev. Lett. 118, 076101 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Schneider, J. et al. Ultrafast, temporally stochastic STED nanoscopy of millisecond dynamics. Nat. Methods 12, 827–830 (2015).

    Article  Google Scholar 

  37. 37.

    Santi, P. A. Light sheet fluorescence microscopy: a review. J. Histochem. Cytochem. 59, 129–138 (2011).

    Article  Google Scholar 

  38. 38.

    Cnossen, J. et al. Localization microscopy at doubled precision with patterned illumination. Nat. Methods 17, 59–63 (2020).

    Article  Google Scholar 

  39. 39.

    Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  40. 40.

    Gaeta, A. L., Lipson, M. & Kippenberg, T. J. Photonic-chip-based frequency combs. Nat. Photon. 13, 158–169 (2019).

    ADS  Article  Google Scholar 

  41. 41.

    Orth, A. & Crozier, K. Gigapixel fluorescence microscopy with a water immersion microlens array. Opt. Express 21, 2361–2368 (2013).

    ADS  Article  Google Scholar 

  42. 42.

    Løvhaugen, P., Ahluwalia, B. S., Huser, T. R. & Hellesø, O. G. Serial Raman spectroscopy of particles trapped on a waveguide. Opt. Express 21, 2964–2970 (2013).

    ADS  Article  Google Scholar 

  43. 43.

    Helle, Ø. I., Ahluwalia, B. S. & Hellesø, O. G. Optical transport, lifting and trapping of micro-particles by planar waveguides. Opt. Express 23, 6601–6612 (2015).

    ADS  Article  Google Scholar 

  44. 44.

    Ahluwalia, B. S., Løvhaugen, P. & Hellesø, O. G. Waveguide trapping of hollow glass spheres. Opt. Lett. 36, 3347–3349 (2011).

    ADS  Article  Google Scholar 

  45. 45.

    Wang, X. et al. Enhanced cell sorting and manipulation with combined optical tweezer and microfluidic chip technologies. Lab Chip 11, 3656–3662 (2011).

    Article  Google Scholar 

  46. 46.

    Yurtsever, G., Weiss, N., Kalkman, J., van Leeuwen, T. G. & Baets, R. Ultra-compact silicon photonic integrated interferometer for swept-source optical coherence tomography. Opt. Lett. 39, 5228–5231 (2014).

    ADS  Article  Google Scholar 

  47. 47.

    Prieto, F. et al. An integrated optical interferometric nanodevice based on silicon technology for biosensor applications. Nanotechnology 14, 907 (2003).

    ADS  Article  Google Scholar 

  48. 48.

    Müller, M., Mönkemöller, V., Hennig, S., Hübner, W. & Huser, T. Open-source image reconstruction of super-resolution structured illumination microscopy data in ImageJ. Nat. Commun. 7, 10980 (2016).

    ADS  Article  Google Scholar 

  49. 49.

    Ovesný, M., Křížek, P., Borkovec, J., Švindrych, Z. & Hagen, G. M. ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30, 2389–2390 (2014).

    Article  Google Scholar 

  50. 50.

    Mönkemöller, V. et al. Primary rat LSECs preserve their characteristic phenotype after cryopreservation. Sci. Rep. 8, 14657–14657 (2018).

    ADS  Article  Google Scholar 

Download references


We thank R. Heintzmann and S. Das for help with the SIM reconstruction algorithms and design of the fibre-optical phase modulator, respectively. We also acknowledge C. I. Øie and D. Wolfson for help with biological specimens and T. Huser for fruitful conceptual discussions. This work was supported by the European Research Council (grant no. 336716 to B.S.A.).

Author information




B.S.A. supervised and conceived this project and provided funding for the project. Ø.I.H. built the set-up, performed the experiments and analysed the data. J.-C.T., F.T.D. and O.G.H. designed the waveguide chip and the mask for fabrication. All authors contributed to chip design. Ø.I.H., F.T.D. and J.-C.T. characterized the waveguides. F.T.D. and Ø.I.H. fabricated the on-chip thermo-optics for phase modulation. M.L. performed all the simulations of cSIM. Ø.I.H. and B.S.A. mainly wrote the manuscript and all authors commented on the manuscript.

Corresponding author

Correspondence to Balpreet Singh Ahluwalia.

Ethics declarations

Competing interests

B.SA. and O.G.H. have applied for patent GB1705660.7 on SIM-on-chip. B.S.A. and Ø.I.H. are founders of Chip NanoImaging ( that is commercializing SIM-on-chip technology. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–17 and Notes 1–6.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Helle, Ø.I., Dullo, F.T., Lahrberg, M. et al. Structured illumination microscopy using a photonic chip. Nat. Photonics 14, 431–438 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing