Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Photoelectronic mapping of the spin–orbit interaction of intense light fields

Abstract

The interaction between a quantum particle’s spin angular momentum1 and its orbital angular momentum2 is ubiquitous in nature. In optics, the spin–orbit optical phenomenon is closely related with the light–matter interaction3 and has been of great interest4,5. With the development of laser technology6, the high-power and ultrafast light sources now serve as a crucial tool in revealing the behaviour of matter under extreme conditions. A comprehensive knowledge of the spin–orbit interaction for intense light is of utmost importance. Here, we report the in situ modulation and visualization of the optical orbital-to-spin conversion in the strong-field regime. We show that, through manipulating the morphology of femtosecond cylindrical vector vortex pulses7 by a slit, the photon’s orbital angular momentum can be controllably transformed into spin after focusing. By employing a strong-field ionization experiment, the orbital-to-spin conversion can be imaged and measured through the photoelectron momentum distributions. Such detection and consequent control of the spin–orbit dynamics of intense laser fields has implications for controlling photoelectron holography and coherent extreme-ultraviolet radiation8.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Schematic of the experiment.
Fig. 2: Simulations of the longitudinal component of light’s intensity, and the local SAM and OAM distribution in the focal plane.
Fig. 3: Correlation between the orbital-to-spin conversion and strong-field ionization.
Fig. 4: The measured and simulated photoelectron momentum distributions.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Beth, R. Mechanical detection and measurement of the angular momentum of light. Phys. Rev. 50, 115–125 (1936).

    Article  ADS  Google Scholar 

  2. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  3. Bliokh, K. Y., Rodríguez-Fortuño, F. J., Nori, F. & Zayats, A. V. Spin–orbit interactions of light. Nat. Photon. 9, 796–808 (2015).

    Article  ADS  Google Scholar 

  4. Rechcinska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, aay4182 (2019).

    Article  Google Scholar 

  5. Shao, Z. K. et al. Spin-orbit interaction of light induced by transverse spin angular momentum engineering. Nat. Commun. 9, 926 (2018).

    Article  ADS  Google Scholar 

  6. Li, W. et al. 339 J high-energy Ti:sapphire chirped-pulse amplifier for 10 PW laser facility. Opt. Lett. 43, 5681–5684 (2018).

    Article  ADS  Google Scholar 

  7. Zhao, Z., Wang, J., Li, S. & Willner, A. E. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams. Opt. Lett. 38, 932–934 (2013).

    Article  ADS  Google Scholar 

  8. Dorney, K. M. Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin–orbit momentum conservation. Nat. Photon. 13, 123–130 (2019).

    Article  ADS  Google Scholar 

  9. Yao, A. M. & Padgett, M. J. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon. 3, 161–204 (2011).

    Article  Google Scholar 

  10. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  ADS  MathSciNet  Google Scholar 

  11. Haefner, D., Sukhov, S. & Dogariu, A. Spin Hall effect of light in spherical geometry. Phys. Rev. Lett. 102, 123903 (2009).

    Article  ADS  Google Scholar 

  12. Zhao, Y., Edgar, J. S., Jeffries, G. D. M., McGloin, D. & Chiu, D. T. Spin‑to‑orbital angular momentum conversion in a strongly focused optical beam. Phys. Rev. Lett. 99, 073901 (2007).

    Article  ADS  Google Scholar 

  13. Fu, S. et al. Spin-orbit optical Hall effect. Phys. Rev. Lett. 123, 243904 (2019).

    Article  ADS  Google Scholar 

  14. Araneda, G. et al. Wavelength-scale errors in optical localization due to spin–orbit coupling of light. Nat. Phys. 15, 17–21 (2019).

    Article  Google Scholar 

  15. Pan, D., Wei, H., Gao, L. & Xu, H. Strong spin-orbit interaction of light in plasmonic nanostructures and nanocircuits. Phys. Rev. Lett. 117, 166803 (2016).

    Article  ADS  Google Scholar 

  16. Han, L. et al. Catalystlike effect of orbital angular momentum on the conversion of transverse to three-dimensional spin states within tightly focused radially polarized beams. Phys. Rev. A 97, 053802 (2018).

    Article  ADS  Google Scholar 

  17. Li, M. et al. Orbit-induced localized spin angular momentum in strong focusing of optical vectorial vortex beams. Phys. Rev. A 97, 053842 (2018).

    Article  ADS  Google Scholar 

  18. Yu, P., Zhao, Q., Hu, X., Li, Y. & Gong, L. Orbit-induced localized spin angular momentum in the tight focusing of linearly polarized vortex beams. Opt. Lett. 43, 5677–5680 (2018).

    Article  ADS  Google Scholar 

  19. Nechayev, S., Eismann, J. S., Leuchs, G. & Banzer, P. Orbital-to-spin angular momentum conversion employing localized helicity. Phys. Rev. B 99, 075155 (2019).

    Article  ADS  Google Scholar 

  20. Mulser, P. & Bauer, D. High Power Laser-Matter Interaction (Springer Science & Business Media, 2010).

  21. Corkum, P. B. Plasma perspective on strong-field multiphoton ionization. Phys. Rev. Lett. 71, 1994–1997 (1993).

    Article  ADS  Google Scholar 

  22. Tsesses, S., Cohen, K., Ostrovsky, E., Gjonaj, B. & Bartal, G. Spin−orbit interaction of light in plasmonic lattices. Nano Lett. 19, 4010–4016 (2019).

    Article  ADS  Google Scholar 

  23. Ullrich, J. et al. Cold target recoil ion momentum spectroscopy. J. Phys. B 30, 2917–2974 (1997).

    Article  ADS  Google Scholar 

  24. Youngworth, K. S. & Brown, T. G. Focusing of high numerical aperture cylindrical-vector beams. Opt. Express 7, 77–87 (2000).

    Article  ADS  Google Scholar 

  25. Chávez-Cerda, S. et al. Holographic generation and orbital angular momentum of high-order Mathieu beams. J. Opt. B 4, S52–S57 (2002).

    Article  Google Scholar 

  26. Cardano, F., Karimi, E., Marrucci, L., de Lisio, C. & Santamato, E. Generation and dynamics of optical beams with polarization singularities. Opt. Express 21, 8815–8820 (2013).

    Article  ADS  Google Scholar 

  27. Ammosov, M. V. et al. Tunnel ionization of complex atoms and of atomic ions in an alternating electromagnetic field. Sov. Phys. JETP 64, 1191–1194 (1986).

    Google Scholar 

  28. Liu, M.-M. et al. Energy- and momentum-resolved photoelectron spin polarization in multiphoton ionization of Xe by circularly polarized fields. Phys. Rev. Lett. 120, 043201 (2018).

    Article  ADS  Google Scholar 

  29. Goreslavski, S. P., Paulus, G. G., Popruzhenko, S. V. & Shvetsov-Shilovski, N. I. Coulomb asymmetry in above-threshold ionization. Phys. Rev. Lett. 93, 233002 (2004).

    Article  ADS  Google Scholar 

  30. Li, M. et al. Classical-quantum correspondence for above threshold ionization. Phys. Rev. Lett. 112, 113002 (2014).

    Article  ADS  Google Scholar 

  31. Bauer, T. et al. Observation of optical polarization Möbius strips. Science 347, 964–966 (2015).

    Article  ADS  Google Scholar 

  32. Beresna, M., Gecevičius, M. & Kazansky, P. G. Polarization sensitive elements fabricated by femtosecond laser nanostructuring of glass. Opt. Mater. Express 1, 783–795 (2011).

    Article  ADS  Google Scholar 

  33. Oemrawsingh, S. S. R. et al. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt. 43, 688–694 (2004).

    Article  ADS  Google Scholar 

  34. Shao, Y. et al. Isolating resonant excitation from above-threshold ionization. Phys. Rev. A 92, 013415 (2015).

    Article  ADS  Google Scholar 

  35. Berry, M. V. Paraxial beams of spinning light. In Int. Conf. Singular Optics (ed. Soskin, M. S.) Vol. 3487, 6–11 (SPIE, 1998).

  36. Aiello, A., Banzer, P., Neugebauer, M. & Leuchs, G. From transverse angular momentum to photonic wheels. Nat. Photon. 9, 789–795 (2015).

    Article  ADS  Google Scholar 

  37. Minkowski, H. Die Grundgleichungen für die elektromagnetischen Vorgänge in bewegten Körpern. Math. Ann. 68, 472–525 (1910).

    Article  MathSciNet  Google Scholar 

  38. O’Neil, A. T., MacVicar, I., Allen, L. & Padgett, M. J. Intrinsic and extrinsic nature of the orbital angular momentum of a light beam. Phys. Rev. Lett. 88, 053601 (2002).

    Article  ADS  Google Scholar 

  39. Perelomov, A. M., Popov, V. S. & Terentev, M. V. Ionization of atoms in an alternating electric field. Sov. Phys. JETP 23, 924–934 (1966).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank finance support by the National Science Foundation of China (grant numbers: 92050201, 918850111, 11774013, 11625414).

Author information

Authors and Affiliations

Authors

Contributions

Y.F. and Z.G. performed the experiments. Y.F. and Y.L. analysed and interpreted the data. Simulations were performed by Y.F. and M.H. This project was coordinated by Y.L. All authors discussed the results and wrote the paper.

Corresponding author

Correspondence to Yunquan Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3 and Discussion (five sections).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., Han, M., Ge, P. et al. Photoelectronic mapping of the spin–orbit interaction of intense light fields. Nat. Photonics 15, 115–120 (2021). https://doi.org/10.1038/s41566-020-00709-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-020-00709-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing