Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical polarization analogue in free electron beams

Abstract

Spectromicroscopy techniques with fast electrons can quantitatively measure the optical response of excitations with unrivalled spatial resolution. However, owing to their inherently scalar nature, electron waves cannot access the polarization-related quantities. Despite promising attempts based on the conversion of concepts originating from singular optics (such as vortex beams), the definition of an optical polarization analogue for fast electrons has remained an open question. Here we establish such an analogue using the dipole transition vector of the electron between two well-chosen singular wave states. We show that electron energy loss spectroscopy allows the direct measurement of the polarized electromagnetic local density of states. In particular, in the case of circular polarization, it directly measures the local optical spin density. This work establishes electron energy loss spectroscopy as a quantitative technique to tackle fundamental issues in nano-optics, such as super-chirality, local polarization of dark excitations or polarization singularities at the nanoscale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of polarized LES and polarized EELS.
Fig. 2: Comparison of linearly and circularly polarized LES and non-spatially resolved pEELS experiments on simple plasmonic nanostructures.
Fig. 3: Spatially resolved pEELS.

Similar content being viewed by others

Data availability

Source data are available for this paper. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Akkermans, E. & Montanbaux, G. Mesoscopic Physics of Electrons and Photons (Cambridge Univ. Press, 2010); https://doi.org/10.1017/CBO9780511618833

  2. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T. & Ezawa, H. Demonstration of single electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989).

    Article  ADS  Google Scholar 

  3. Bach, R., Pope, D., Liou, S.-H. & Batelaan, H. Controlled double-slit electron diffraction. New J. Phys. 15, 033018 (2013).

    Article  ADS  Google Scholar 

  4. Crommie, M. F., Lutz, C. P. & Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science 262, 218–220 (1993).

    Article  ADS  Google Scholar 

  5. Colas des Francs, G. et al. Optical analogy to electronic quantum corrals. Phys. Rev. Lett. 86, 4950–4953 (2001).

    Article  ADS  Google Scholar 

  6. Anderson, P. W. Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492–1505 (1958).

    Article  ADS  Google Scholar 

  7. Wiersma, D. S., Bartolini, P., Lagendijk, A. D. & Righini, R. Localization of light in a disordered medium. Nature 390, 671–673 (1997).

    Article  ADS  Google Scholar 

  8. Rose, H. H. Geometrical Charged-Particle Optics (Springer Series in Optical Sciences, Springer Berlin Heidelberg, 2013).

  9. Scherzer, O. The theoretical resolution limit of the electron microscope. J. Appl. Phys. 20, 20–29 (1949).

    Article  ADS  MATH  Google Scholar 

  10. Haider, M. et al. Electron microscopy image enhanced. Nature 392, 768–769 (1998).

    Article  ADS  Google Scholar 

  11. Gabor, D. A new microscopic principle. Nature 161, 777–778 (1948).

    Article  ADS  Google Scholar 

  12. Bliokh, K. Y., Bliokh, Y. P., Savel’ev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

    Article  ADS  Google Scholar 

  13. Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    Article  ADS  Google Scholar 

  14. Verbeeck, J., Tian, H. & Schattschneider, P. Production and application of electron vortex beams. Nature 467, 301–304 (2010).

    Article  ADS  Google Scholar 

  15. McMorran, B. J. et al. Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192–195 (2011).

    Article  ADS  Google Scholar 

  16. Nye, J. F. & Berry, M. V. Dislocations in wave trains. Proc. R. Soc. A 336, 165–190 (1974).

    ADS  MathSciNet  MATH  Google Scholar 

  17. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    Article  ADS  Google Scholar 

  18. García De Abajo, F. J., Estrada, H. & Meseguer, F. Diacritical study of light, electrons and sound scattering by particles and holes. New J. Phys. 11, 1–10 (2009).

    Google Scholar 

  19. Losquin, A. et al. Unveiling nanometer scale extinction and scattering phenomena through combined electron energy loss spectroscopy and cathodoluminescence measurements. Nano Lett. 15, 1229–1237 (2015).

    Article  ADS  Google Scholar 

  20. García de Abajo, F. J. & Kociak, M. Probing the photonic local density of states with electron energy loss spectroscopy. Phys. Rev. Lett. 100, 106804 (2008).

    Article  ADS  Google Scholar 

  21. Nicoletti, O. et al. Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles. Nature 502, 80–84 (2013).

    Article  ADS  Google Scholar 

  22. Losquin, A. & Kociak, M. Link between cathodoluminescence and electron energy loss spectroscopy and the radiative and full electromagnetic local density of states. ACS Photon. 2, 1619–1627 (2015).

    Article  Google Scholar 

  23. Coles, M. M. & Andrews, D. L. Chirality and angular momentum in optical radiation. Phys. Rev. A 85, 063810 (2012).

    Article  ADS  Google Scholar 

  24. Collins, J. T. et al. Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends. Adv. Opt. Mater. 5, 1700182 (2017).

    Article  Google Scholar 

  25. Tullius, R. et al. ‘Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc. 137, 8380–8383 (2015).

    Article  Google Scholar 

  26. Schäferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012).

    Google Scholar 

  27. Asenjo-Garcia, A. & García De Abajo, F. J. Dichroism in the interaction between vortex electron beams, plasmons, and molecules. Phys. Rev. Lett. 113, 1–5 (2014).

    Article  Google Scholar 

  28. Guzzinati, G. et al. Probing the symmetry of the potential of localized surface plasmon resonances with phase-shaped electron beams. Nat. Commun. 8, 14999 (2017).

    Article  ADS  Google Scholar 

  29. Lourenço-Martins, H., Lubk, A. & Kociak, M. Bridging nano-optics and condensed matter formalisms in a unified description of inelastic scattering of relativistic electron beams. Preprint at https://arxiv.org/abs/2007.02773 (2020).

  30. Schattschneider, P., Löffler, S., Stöger-Pollach, M. & Verbeeck, J. Is magnetic chiral dichroism feasible with electron vortices? Ultramicroscopy 136, 81–85 (2014).

    Article  Google Scholar 

  31. Ugarte, D. & Ducati, C. Controlling multipolar surface plasmon excitation through the azimuthal phase structure of electron vortex beams. Phys. Rev. B 93, 1–9 (2016).

    Article  Google Scholar 

  32. Zanfrognini, M. et al. Orbital angular momentum and energy loss characterization of plasmonic excitations in metallic nanostructures in TEM. ACS Photon. 6, 620–627 (2019).

    Article  Google Scholar 

  33. Ouyang, F. & Isaacson, M. Surface plasmon excitation of objects with arbitrary shape and dielectric constant. Phil. Mag. B 60, 481–492 (1989).

    Article  ADS  Google Scholar 

  34. Boudarham, G. & Kociak, M. Modal decompositions of the local electromagnetic density of states and spatially resolved electron energy loss probability in terms of geometric modes. Phys. Rev. B 85, 245447 (2012).

    Article  ADS  Google Scholar 

  35. Hohenester, U. Simulating electron energy loss spectroscopy with the MNPBEM toolbox. Comput. Phys. Commun. 185, 1177–1187 (2014).

    Article  ADS  Google Scholar 

  36. García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010).

    Article  ADS  Google Scholar 

  37. Schattschneider, P., Stöger-Pollach, M. & Verbeeck, J. Novel vortex generator and mode converter for electron beams. Phys. Rev. Lett. 109, 084801 (2012).

    Article  ADS  Google Scholar 

  38. Verbeeck, J. et al. Demonstration of a 2 × 2 programmable phase plate for electrons. Ultramicroscopy 190, 58–65 (2018).

    Article  Google Scholar 

  39. Grillo, V. et al. Measuring the orbital angular momentum spectrum of an electron beam. Nat. Commun. 8, 15536 (2017).

    Article  ADS  Google Scholar 

  40. Pozzi, G. et al. Design of electrostatic phase elements for sorting the orbital angular momentum of electrons. Ultramicroscopy 208, 112861 (2020).

    Article  Google Scholar 

  41. Colas des Francs, G., Girard, C., Weeber, J. C. & Dereux, A. Relationship between scanning near-field optical images and local density of photonic states. Chem. Phys. Lett. 345, 512–516 (2001).

    Article  ADS  Google Scholar 

  42. Yin, X., Schäferling, M., Metzger, B. & Giessen, H. Interpreting chiral nanophotonic spectra: the plasmonic Born–Kuhn model. Nano Lett. 13, 6238–6243 (2013).

    Article  ADS  Google Scholar 

  43. Lu, X. et al. Circular dichroism from single plasmonic nanostructures with extrinsic chirality. Nanoscale 6, 14244–14253 (2014).

    Article  ADS  Google Scholar 

  44. Harvey, T. R. Probing chirality with inelastic electron-light scattering. Nano Lett. 20, 4377–4383 (2020).

    Article  ADS  Google Scholar 

  45. Pham, A. et al. Chiral optical local density of states in a spiral plasmonic cavity. Phys. Rev. A 94, 053850 (2016).

    Article  ADS  Google Scholar 

  46. Pham, A., Zhao, A., Genet, C. & Drezet, A. Optical chirality density and flux measured in the local density of states of spiral plasmonic structures. Phys. Rev. A 98, 1–9 (2018).

    Article  Google Scholar 

  47. Novotny, L. & Hecht, B. Principles of Nano-Optics (Cambridge Univ. Press, 2006).

  48. Krehl, J. et al. Spectral field mapping in plasmonic nanostructures with nanometer resolution. Nat. Commun. 9, 4207 (2018).

    Article  ADS  Google Scholar 

  49. Burresi, M. et al. Observation of polarization singularities at the nanoscale. Phys. Rev. Lett. 102, 033902 (2009).

    Article  ADS  Google Scholar 

  50. Rotenberg, N., Feber, B., Visser, T. D. & Kuipers, L. Tracking nanoscale electric and magnetic singularities through three-dimensional space. Optica 2, 540–546 (2015).

    Article  ADS  Google Scholar 

  51. Kim, S. M. & Gbur, G. Angular momentum conservation in partially coherent wave fields. Phys. Rev. A 86, 043814 (2012).

    Article  ADS  Google Scholar 

  52. Bliokh, K. Y. & Nori, F. Characterizing optical chirality. Phys. Rev. A 83, 021803 (2011).

    Article  ADS  Google Scholar 

  53. Cameron, R. P., Barnett, S. M. & Yao, A. M. Optical helicity, optical spin and related quantities in electromagnetic theory. New J. Phys. 14, 053050 (2012).

    Article  ADS  MATH  Google Scholar 

  54. Bliokh, K. Y., Bekshaev, A. Y. & Nori, F. Dual electromagnetism: helicity, spin, momentum and angular momentum. New J. Phys. 15, 033026 (2013).

    Article  ADS  MATH  Google Scholar 

  55. Gómez-Medina, R., Yamamoto, N., Nakano, M. & García de Abajo, F. J. Mapping plasmons in nanoantennas via cathodoluminescence. New J. Phys. 10, 105009 (2008).

    Article  ADS  Google Scholar 

  56. Osorio, C. I., Coenen, T., Brenny, B. J. M., Polman, A. & Koenderink, A. F. Angle-resolved cathodoluminescence imaging polarimetry. ACS Photon. 3, 147–154 (2016).

    Article  Google Scholar 

  57. Polman, A., Kociak, M. & García de Abajo, F. J. Electron-beam spectroscopy for nanophotonics. Nat. Mater. 18, 1158–1171 (2019).

    Article  ADS  Google Scholar 

  58. Yurtsever, A. & Zewail, A. H. Direct visualization of near-fields in nanoplasmonics and nanophotonics. Nano Lett. 12, 3334–3338 (2012).

    Article  ADS  Google Scholar 

  59. Bliokh, K. Y. et al. Theory and applications of free-electron vortex states. Phys. Rep. 690, 1–70 (2017).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge J. Verbeeck for introduction to this field and thank J. Verbeeck, D. Ugarte, F. Houdellier and G. Guzzinati for insightful discussions. H.L.-M. thanks T. R. Harvey for insightful discussions. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 823717-ESTEEM3 and no. 101017720-EBEAM, from the French state managed by the National Agency for Research under the programme of future investment EQUIPEX TEMPOS-CHROMATEM with the reference ANR-10-EQPX-50 and ANR-17-CE24-0039 (2D-CHIRAL).

Author information

Authors and Affiliations

Authors

Contributions

M.K. and H.L.-M. developed the theory. H.L.-M. wrote the simulation codes and performed the numerical simulations. M.K., H.L.-M. and D.G. developed the analogy between the Bloch and Poincaré spheres. All the authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Mathieu Kociak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Examples of transitions between higher order HG states possessing a non-zero OPA.

Transitions a and b possess a dipole moment along the x direction and therefore measure Ex(ω, qz). Transitions c and d possess a dipole moment along the y direction and therefore measure Ey(ω, qz).

Extended Data Fig. 2 Illustration of the effect of the summation over the final states.

a, Wavefunction ψi and plasmonic potential ϕm of the four first modes m of a 100nm * 15nm silver nano-antenna. The relative position and scale of the wavefunction and potential are respected. Scales bar is 50 nm. b, pEELS spectrum as a function of the collection angle. The peaks of the four modes shown in a. are marked with arrows. Below θω, the second and fourth peak are suppressed due to the selection rule reminiscent of formula (184) of the SI. Above θω,all the peaks are present and the resulting spectrum is essentially classical.

Supplementary information

Supplementary Material

Supplementary discussion and extended demonstrations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lourenço-Martins, H., Gérard, D. & Kociak, M. Optical polarization analogue in free electron beams. Nat. Phys. 17, 598–603 (2021). https://doi.org/10.1038/s41567-021-01163-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01163-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing