Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes

Abstract

Fast, sensitive avalanche photodiodes (APDs) are required for applications such as high-speed data communications and light detection and ranging (LIDAR) systems. Unfortunately, the InP and InAlAs used as the gain material in these APDs have similar electron and hole impact ionization coefficients (α and β, respectively) at high electric fields, giving rise to relatively high excess noise and limiting their sensitivity and gain bandwidth product1. Here, we report extremely low excess noise in an AlAs0.56Sb0.44 lattice matched to InP. A deduced β/α ratio as low as 0.005 with an avalanche region of 1,550 nm is close to the theoretical minimum and is significantly smaller than that of silicon, with modelling suggesting that vertically illuminated APDs with a sensitivity of −25.7 dBm at a bit error rate of 1 × 10−12 at 25 Gb s−1 and 1,550 nm can be realized. These findings could yield a new breed of high-performance receivers for applications in networking and sensing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of P1 and the measured multiplication results.
Fig. 2: Measured excess noise results.
Fig. 3: Optical sensitivity modelling.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Emmons, R. B. Avalanche photodiodes frequency response. J. Appl. Phys. 38, 3705 (1967).

    ADS  Article  Google Scholar 

  2. 2.

    Campbell, J. C. et al. Recent advances in avalanche photodiodes. IEEE J. Sel. Top. Quantum Electron. 10, 777–787 (2004).

    ADS  Article  Google Scholar 

  3. 3.

    Nada, M., Muramoto, Y., Yokoyama, H., Ishibashi, T. & Kodama, S. InAlAs APD with high multiplied responsivity-bandwidth product (MR-bandwidth product) of 168 A/W GHz for 25 Gbit/s high-speed operations. Electron. Lett. 48, 397–399 (2012).

    Article  Google Scholar 

  4. 4.

    Nada, M., Yoshimatsu, T., Muramoto, Y., Yokoyama, H. & Matsuzaki, H. Design and performance of high-speed avalanche photodiodes for 100-Gb/s systems and beyond. J. Lightwave Technol. 33, 984–990 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    Yoshimatsu, T. et al. Compact and high-sensitivity 100-Gb/s (4 × 25 Gb/s) APD-ROSA with a LAN-WDM PLC demultiplexer. Opt. Express 20, B393–B398 (2012).

    Article  Google Scholar 

  6. 6.

    Shimizu, S., Shiba, K., Nakata, T., Kasahara, K. & Makita, K. 40 Gbit/s waveguide avalanche photodiode with p-type absorption layer and thin InAlAs multiplication layer. Electron. Lett. 43, 476–477 (2007).

    Article  Google Scholar 

  7. 7.

    Nada, M. et al. 50-Gbit/s vertical illumination avalanche photodiode for 400-Gbit/s ethernet systems. Opt. Express 22, 14681–14687 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nat. Photon. 3, 59–63 (2009).

    ADS  Article  Google Scholar 

  9. 9.

    Michel, J., Liu, J. & Kimerling, C. High-performance Ge-on-Si photometers. Nat. Photon. 4, 527–534 (2010).

    ADS  Article  Google Scholar 

  10. 10.

    Huang, Z. et al. 25 Gbps low-voltage waveguide Si–Ge avalanche photodiode. Optica 8, 793–798 (2016).

    Article  Google Scholar 

  11. 11.

    Farrell, A. C. et al. Plasmonic field confinement for separate absorption–multiplication in InGaAs nanopillar avalanche photodiodes. Sci. Rep. 5, 17580 (2015).

    ADS  Article  Google Scholar 

  12. 12.

    Bank, S. R. et al. Avalanche photodiodes based on the AlInAsSb materials system. IEEE J. Sel. Top. Quantum Electron. 24, 3800407 (2018).

    Article  Google Scholar 

  13. 13.

    Woodson, M. E. et al. Low noise AlInAsSb avalanche photodiode. Appl. Phys. Lett. 108, 081102 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    Rockwell, A. et al. Al0.8In0.2As0.23Sb0.77 avalanche photodiodes. IEEE Photon. Technol. Lett. 30, 1048–1051 (2018).

    ADS  Article  Google Scholar 

  15. 15.

    Marshall, A. R. J., Ker, P. J., Krysa, A., David, J. P. R. & Tan, C. H. High speed InAs electron avalanche photodiodes overcome the conventional gain–bandwidth product limit. Opt. Express 23, 23341–23349 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    Yi, X. et al. Demonstration of large ionization coefficient ratio in AlAs0.56Sb0.44 lattice matched to InP. Sci. Rep. 8, 9107 (2018).

    ADS  Article  Google Scholar 

  17. 17.

    Xie, J., Xie, S., Tozer, T. C. & Tan, C. H. Excess noise characteristics of thin AlAsSb APDs. IEEE Trans. Electron Devices 59, 1475–1479 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    McIntyre, R. J. Multiplication noise in uniform avalanche diodes. IEEE Trans. Electron Devices 13, 164–168 (1966).

    ADS  Article  Google Scholar 

  19. 19.

    Li, K. F. et al. Avalanche multiplication noise characteristics in thin GaAs p+-i-n+ diodes. IEEE Trans. Electron Devices 45, 2102–2107 (1998).

    ADS  Article  Google Scholar 

  20. 20.

    Hayat, M. M. et al. Effect of dead space on gain and noise of double-carrier-multiplication avalanche photodiodes. IEEE Trans. Electron Devices 39, 546–552 (1992).

    ADS  Article  Google Scholar 

  21. 21.

    Goh, Y. L. et al. Excess avalanche noise in In0.52Al0.48As. IEEE J. Quantum Electron. 43, 503–507 (2007).

    ADS  Article  Google Scholar 

  22. 22.

    Produce Datasheet: Si APD (S10341 series) https://www.hamamatsu.com/resources/pdf/ssd/s10341_series_kapd1030e.pdf (Hamamatsu).

  23. 23.

    Ong, D. S. G. et al. A simple model to determine multiplication and noise in avalanche photodiodes. J. Appl. Phys. 83, 3426 (1998).

    ADS  Article  Google Scholar 

  24. 24.

    Ramo, S. Currents induced by electron motion. Proc. IRE 27, 584–585 (1939).

    Article  Google Scholar 

  25. 25.

    Xie, S. et al. InGaAs/AlGaAsSb avalanche photodiode with high gain-bandwidth product. Opt. Express 24, 24242–24247 (2016).

    ADS  Article  Google Scholar 

  26. 26.

    Rouvie., A. et al. High gain × bandwidth product over 140 GHz planar junction AlInAs avalanche photodiodes. IEEE Photon. Technol. Lett. 20, 455–457 (2008).

    ADS  Article  Google Scholar 

  27. 27.

    Li, N. et al. InGaAs/InAlAs avalanche photodiode with undepleted absorber. Appl. Phys. Lett. 82, 2175–2177 (2003).

    ADS  Article  Google Scholar 

  28. 28.

    Hayashi, M. et al. Microlens-integrated large-area InAlGaAs–InAlAs superlattice APDs for eye-safety 1.5 μm wavelength optical measurement use. IEEE Photon. Technol. Lett. 10, 576–578 (1998).

    ADS  Article  Google Scholar 

  29. 29.

    Agrawal, G. P. in Fiber-Optic Communication Systems 3rd edn, Ch. 4 (Wiley, 2002).

  30. 30.

    Ong, D. S. G. et al. Optimisation of InP APDs for high-speed lightwave systems. J. Lightwave Technol. 27, 3294–3302 (2009).

    ADS  Article  Google Scholar 

  31. 31.

    Ishimura, E. & Yagyu, E. High sensitivity 2.5/10 Gbps InAlAs avalanche photodiodes. Mitsubishi Electr. Adv. 127, 17–29 (2009).

    Google Scholar 

  32. 32.

    Tan, C. H., Xie, S. & Xie, J. Low noise avalanche photodiodes incorporating a 40 nm AlAsSb avalanche region. IEEE J. Quantum Electron. 48, 36–41 (2012).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

D.L.H. acknowledges financial support provided by the Sêr Cymru National Research Network in Advanced Engineering and Materials. S.Y.X. acknowledges financial support from the European Regional Development Fund through the Welsh Government. B.L.L. acknowledges support from the National Science Foundation of the United States (ECCS-1810507).

Author information

Affiliations

Authors

Contributions

S.Y.X., B.L.L. and J.P.R.D. designed the structures. B.L.L., M.C.D. and D.L.H. carried out layer growth. L.W.L. conducted the device fabrication. X.Y. undertook the experimental measurements. J.S.C. and X.Y. undertook the absorption modelling. S.Y.X. performed the sensitivity simulations and SEM. X.Y., S.Y.X., C.H.T. and J.P.R.D. discussed and analysed the results, and wrote the manuscript. J.P.R.D., C.H.T. and D.L.H. supervised the project. All authors reviewed the manuscript and approved the paper.

Corresponding authors

Correspondence to Shiyu Xie or Baolai Liang or John P. R. David.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Fabrication process and noise measurements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Xie, S., Liang, B. et al. Extremely low excess noise and high sensitivity AlAs0.56Sb0.44 avalanche photodiodes. Nat. Photonics 13, 683–686 (2019). https://doi.org/10.1038/s41566-019-0477-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing