Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics

Abstract

The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to connect the telecommunications band with visible and short near-infrared wavelengths can enable a connection between high-performance chip-integrated lasers based on scalable nanofabrication technology with atomic systems used for time and frequency metrology. Although second-order nonlinear (χ(2)) systems are the natural approach for bridging such large spectral gaps, here we show that third-order nonlinear (χ(3)) systems, despite their typically much weaker nonlinear response, can realize spectral translation with unprecedented performance. By combining resonant enhancement with nanophotonic mode engineering in a silicon nitride microring resonator, we demonstrate efficient spectral translation of a continuous-wave signal from the telecom band (~1,550 nm) to the visible band (~650 nm) through cavity-enhanced four-wave mixing. We achieve such translation over a wide spectral range >250 THz with a translation efficiency of (30.1 ± 2.8)% and using an ultralow pump power of (329 ± 13) μW. The translation efficiency projects to (274 ± 28)% at 1 mW and is more than an order of magnitude larger than what has been achieved in current nanophotonic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanophotonic telecom-to-visible spectral translation and efficiency comparison.
Fig. 2: Design for telecom-to-visible spectral translation.
Fig. 3: Assessment of device Q, coupling, and phase and frequency matching.
Fig. 4: Telecom-to-visible nanophotonic spectral translation.
Fig. 5: Comparison of our nanophotonic spectral translation efficiency with state-of-the-art results.

Similar content being viewed by others

Data availability

The data that supports the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Boyd, R. W. Nonlinear Optics (Academic Press, 2008).

  2. Agrawal, G. Nonlinear Fiber Optics (Academic Press, 2007).

  3. Komljenovic, T. et al. Heterogeneous silicon photonic integrated circuits. J. Lightwave Technol. 34, 20–35 (2016).

    Article  ADS  Google Scholar 

  4. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  5. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  6. Riehle, F. Optical clock networks. Nat. Photon. 11, 25–31 (2017).

    Article  ADS  Google Scholar 

  7. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

  8. Fürst, J. U. et al. Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010).

    Article  ADS  Google Scholar 

  9. Wang, C. et al. Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides. Optica 5, 1438–1441 (2018).

    Article  Google Scholar 

  10. Luo, R. et al. Optical parametric generation in a lithium niobate microring with modal phase matching. Phys. Rev. Appl. 11, 034026 (2019).

    Article  ADS  Google Scholar 

  11. Liu, X. et al. Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation. Nat. Photon. 6, 667–671 (2012).

    Article  ADS  Google Scholar 

  12. Agha, I., Ates, S., Davanco, M. & Srinivasan, K. A chip-scale, telecommunications-band frequency conversion interface for quantum emitters. Opt. Express 21, 1476–1478 (2013).

    Article  Google Scholar 

  13. Li, Q., Davanço, M. & Srinivasan, K. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nat. Photon. 10, 406–414 (2016).

    Article  ADS  Google Scholar 

  14. Ramelow, S. et al. Strong nonlinear coupling in a Si3N4 ring resonator. Phys. Rev. Lett. 122, 153906 (2019).

    Article  ADS  Google Scholar 

  15. Hickstein, D. D. et al. Self-organized nonlinear gratings for ultrafast nanophotonics. Preprint at arXiv https://arxiv.org/abs/1806.07547 (2018).

  16. Grassani, D., Pfeiffer, M. H. P., Kippenberg, T. J. & Brès, C.-S. Second- and third-order nonlinear wavelength conversion in an all-optically poled Si3N4 waveguide. Opt. Lett. 44, 106–109 (2019).

    Article  ADS  Google Scholar 

  17. Ferrera, M. et al. Low-power continuous-wave nonlinear optics in doped silica glass integrated waveguide structures. Nat. Photon. 2, 737–740 (2008).

    Article  ADS  Google Scholar 

  18. Zhang, X. et al. Symmetry-breaking-induced nonlinear optics at a microcavity surface. Nat. Photon. 13, 21–24 (2019).

    Article  ADS  Google Scholar 

  19. Guo, X., Zou, C. L., Jung, H. & Tang, H. X. On-chip strong coupling and efficient frequency conversion between telecom and visible optical modes. Phys. Rev. Lett. 117, 123902 (2016).

    Article  ADS  Google Scholar 

  20. Guo, X., Zou, C.-L. & Tang, H. X. Second-harmonic generation in aluminum nitride microrings with 2,500%/W conversion efficiency. Optica 3, 1126–1131 (2016).

    Article  Google Scholar 

  21. Bruch, A. W. et al. 17,000%/W second-harmonic conversion efficiency in single-crystalline aluminum nitride microresonators. Appl. Phys. Lett. 113, 131102 (2018).

    Article  ADS  Google Scholar 

  22. Chang, L. et al. Thin film wavelength converters for photonic integrated circuits. Optica 3, 531–535 (2016).

    Article  Google Scholar 

  23. Chang, L. et al. High efficiency SHG in heterogenous integrated GaAs ring resonators. APL Photon. 4, 036103 (2019).

    Article  ADS  Google Scholar 

  24. Chang, L. et al. Heterogeneously integrated GaAs waveguides on insulator for efficient frequency conversion. Laser Photon. Rev. 12, 1800149 (2018).

    Article  ADS  Google Scholar 

  25. Lake, D. P. et al. Efficient telecom to visible wavelength conversion in doubly resonant gallium phosphide microdisks. Appl. Phys. Lett. 108, 031109 (2016).

    Article  ADS  Google Scholar 

  26. Mariani, S. et al. Second-harmonic generation in AlGaAs microdisks in the telecom range. Opt. Lett. 39, 3062–3065 (2014).

    Article  ADS  Google Scholar 

  27. Lu, X. et al. Chip-integrated visible-telecom photon pair sources for quantum communication. Nat. Phys. 15, 373–381 (2019).

    Article  Google Scholar 

  28. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  29. Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).

    Article  Google Scholar 

  30. Karpov, M., Pfeiffer, M. H., Liu, J., Lukashchuk, A. & Kippenberg, T. J. Photonic chip-based soliton frequency combs covering the biological imaging window. Nat. Commun. 9, 1146 (2018).

    Article  ADS  Google Scholar 

  31. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    Article  ADS  Google Scholar 

  32. Yariv, A. & Yeh, P. Photonics: Optical Electronics in Modern Communications (Oxford Univ. Press, 2006).

  33. Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article  Google Scholar 

  34. Shah Hosseini, E., Yegnanarayanan, S., Atabaki, A. H., Soltani, M. & Adibi, A. Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths. Opt. Express 18, 2127–2136 (2010).

    Article  ADS  Google Scholar 

  35. Lu, X., Rogers, S., Jiang, W. C. & Lin, Q. Selective engineering of cavity resonance for frequency matching in optical parametric processes. Appl. Phys. Lett. 105, 151104 (2014).

    Article  ADS  Google Scholar 

  36. Helt, L. G., Liscidini, M. & Sipe, J. E. How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices. J. Opt. Soc. Am. B 29, 2199–2212 (2012).

    Article  ADS  Google Scholar 

  37. Hummon, M. T. et al. Photonic chip for laser stabilization to an atomic vapor with 10−11 instability. Optica 5, 443–449 (2018).

    Article  Google Scholar 

  38. Lin, J. et al. Phase-matched second-harmonic generation in an on-chip LiNbO3 microresonator. Phys. Rev. Appl. 6, 014002 (2016).

    Article  ADS  Google Scholar 

  39. Levy, J. S., Foster, M. A., Gaeta, A. L. & Lipson, M. Harmonic generation in silicon nitride ring resonators. Opt. Express 19, 11415–11421 (2011).

    Article  ADS  Google Scholar 

  40. Surya, J. B., Guo, X., Zou, C.-L. & Tang, H. X. Efficient third harmonic generation in composite aluminum nitride/silicon nitride microrings. Optica 5, 103–108 (2017).

    Article  Google Scholar 

  41. Balram, K. C. et al. The nanolithography toolbox. J. Res. NIST 121, 464–475 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the DARPA DODOS and NIST-on-a-chip programmes. X.L., G.M., Q.L. and A.S. acknowledge support under the Cooperative Research Agreement between the University of Maryland and NIST-PML (award no. 70NANB10H193).

Author information

Authors and Affiliations

Authors

Contributions

X.L. led the design, fabrication and measurement of the spectral translation devices. G.M., A.S., Q.L. and K.S. provided assistance with design and measurements. D.A.W. and Q.L. provided assistance with fabrication. All authors participated in analysis and discussion of results. X.L. and K.S. wrote the manuscript with assistance from all authors and K.S. supervised the project.

Corresponding authors

Correspondence to Xiyuan Lu or Kartik Srinivasan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work, Supplementary Figs. 1–5 and Supplementary Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Moille, G., Li, Q. et al. Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nat. Photonics 13, 593–601 (2019). https://doi.org/10.1038/s41566-019-0464-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-019-0464-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing