Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres

Abstract

Optical soliton dynamics can cause extreme alteration of the temporal and spectral shape of a propagating light pulse. This occurs at up to kilowatt peak powers in glass-core optical fibres and at the gigawatt level in gas-filled microstructured hollow-core fibres. Here, we demonstrate optical soliton dynamics in large-core hollow capillary fibres. This enables scaling of soliton effects by several orders of magnitude to the multi-millijoule energy and terawatt peak power level. We experimentally demonstrate two key soliton effects. First, we observe self-compression to sub-cycle pulses and infer the creation of sub-femtosecond field waveforms—a route to high-power optical attosecond pulse generation. Second, we efficiently generate continuously tunable high-energy (1–16 μJ) pulses in the vacuum and deep ultraviolet (110 nm to 400 nm) through resonant dispersive-wave emission. These results promise to be the foundation of a new generation of table-top light sources for ultrafast strong-field physics and advanced spectroscopy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Comparison between post-compression and soliton dynamics in HCF.
Fig. 2: Scaling of soliton dynamics in gas-filled hollow fibres.
Fig. 3: Soliton fission length scaling in helium-filled HCFs.
Fig. 4: Soliton self-compression in gas-filled HCFs.
Fig. 5: Tunable RDW emission in gas-filled HCFs.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The computer code used in this study will be made available upon reasonable request to the corresponding author.

References

  1. 1.

    Ippen, E. P. Low-power quasi-cw raman oscillator. Appl. Phys. Lett. 16, 303–305 (1970).

    ADS  Article  Google Scholar 

  2. 2.

    Miles, R. B., Laufer, G. & Bjorklund, G. C. Coherent anti-Stokes Raman scattering in a hollow dielectric waveguide. Appl. Phys. Lett. 30, 417–419 (1977).

    ADS  Article  Google Scholar 

  3. 3.

    Durfee, C. G., Backus, S., Murnane, M. M. & Kapteyn, H. C. Ultrabroadband phase-matched optical parametric generation in the ultraviolet by use of guided waves. Opt. Lett. 22, 1565–1567 (1997).

    ADS  Article  Google Scholar 

  4. 4.

    Kida, Y. & Imasaka, T. Optical parametric amplification of a supercontinuum in a gas. Appl. Phys. B 116, 673–680 (2014).

    ADS  Article  Google Scholar 

  5. 5.

    Misoguti, L. et al. Generation of broadband VUV light using third-order cascaded processes. Phys. Rev. Lett. 87, 013601 (2001).

    ADS  Article  Google Scholar 

  6. 6.

    Wagner, N. L. et al. Self-compression of ultrashort pulses through ionization-induced spatiotemporal reshaping. Phys. Rev. Lett. 93, 173902 (2004).

    ADS  Article  Google Scholar 

  7. 7.

    Anderson, P. N., Horak, P., Frey, J. G. & Brocklesby, W. S. High-energy laser-pulse self-compression in short gas-filled fibers. Phys. Rev. A 89, 013819 (2014).

    ADS  Article  Google Scholar 

  8. 8.

    Gao, X. et al. Ionization-assisted spatiotemporal localization in gas-filled capillaries. Opt. Lett. 43, 3112–3115 (2018).

    ADS  Article  Google Scholar 

  9. 9.

    Durfee, C. G. et al. Phase matching of high-order harmonics in hollow waveguides. Phys. Rev. Lett. 83, 2187–2190 (1999).

    ADS  Article  Google Scholar 

  10. 10.

    Popmintchev, T. et al. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science 336, 1287–1291 (2012).

    ADS  MathSciNet  Article  Google Scholar 

  11. 11.

    Chemnitz, M. et al. Hybrid soliton dynamics in liquid-core fibres. Nat. Commun. 8, 42 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Nisoli, M., Silvestri, S. D. & Svelto, O. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett. 68, 2793–2795 (1996).

    ADS  Article  Google Scholar 

  13. 13.

    Nisoli, M. et al. Toward a terawatt-scale sub-10-fs laser technology. IEEE J. Sel. Top. Quantum Electron. 4, 414–420 (1998).

    ADS  Article  Google Scholar 

  14. 14.

    Shabat, A. & Zakharov, V. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62 (1972).

    ADS  MathSciNet  Google Scholar 

  15. 15.

    Hasegawa, A. & Tappert, F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion. Appl. Phys. Lett. 23, 142–144 (1973).

    ADS  Article  Google Scholar 

  16. 16.

    Mollenauer, L. F., Stolen, R. H., Gordon, J. P. & Tomlinson, W. J. Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers. Opt. Lett. 8, 289–291 (1983).

    ADS  Article  Google Scholar 

  17. 17.

    Im, S.-J., Husakou, A. & Herrmann, J. High-power soliton-induced supercontinuum generation and tunable sub-10-fs VUV pulses from kagome-lattice HC-PCFs. Opt. Express 18, 5367–5374 (2010).

    ADS  Article  Google Scholar 

  18. 18.

    Joly, N. Y. et al. Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber. Phys. Rev. Lett. 106, 203901 (2011).

    ADS  Article  Google Scholar 

  19. 19.

    Mak, K. F., Travers, J. C., Joly, N. Y., Abdolvand, A. & Russell, P. S. J. Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber. Opt. Lett. 38, 3592–3595 (2013).

    ADS  Article  Google Scholar 

  20. 20.

    Balciunas, T. et al. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 6, 6117 (2015).

    ADS  Article  Google Scholar 

  21. 21.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Article  Google Scholar 

  22. 22.

    Wai, P. K. A., Menyuk, C. R., Lee, Y. C. & Chen, H. H. Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers. Opt. Lett. 11, 464–466 (1986).

    ADS  Article  Google Scholar 

  23. 23.

    Mak, K. F., Travers, J. C., Hölzer, P., Joly, N. Y. & Russell, P. S. J. Tunable vacuum-UV to visible ultrafast pulse source based on gas-filled kagome-PCF. Opt. Express 21, 10942–10953 (2013).

    ADS  Article  Google Scholar 

  24. 24.

    Belli, F., Abdolvand, A., Chang, W., Travers, J. C. & Russell, P. S. Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber. Optica 2, 292–300 (2015).

    Article  Google Scholar 

  25. 25.

    Ermolov, A., Mak, K. F., Frosz, M. H., Travers, J. C. & Russell, P. S. J. Supercontinuum generation in the vacuum ultraviolet through dispersive-wave and soliton–plasma interaction in a noble-gas-filled hollow-core photonic crystal fiber. Phys. Rev. A 92, 033821 (2015).

    ADS  Article  Google Scholar 

  26. 26.

    Bromberger, H. et al. Angle-resolved photoemission spectroscopy with 9-eV photon-energy pulses generated in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. Lett. 107, 091101 (2015).

    ADS  Article  Google Scholar 

  27. 27.

    Köttig, F., Tani, F., Biersach, C. M., Travers, J. C. & Russell, P. S. Generation of microjoule pulses in the deep ultraviolet at megahertz repetition rates. Optica 4, 1272–1276 (2017).

    Article  Google Scholar 

  28. 28.

    Travers, J. C., Chang, W., Nold, J., Joly, N. Y. & Russell, P. S. J. Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers. J. Opt. Soc. Am. B 28, A11–A26 (2011).

    Article  Google Scholar 

  29. 29.

    Russell, P. S. J., Hölzer, P., Chang, W., Abdolvand, A. & Travers, J. C. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photon. 8, 278–286 (2014).

    ADS  Article  Google Scholar 

  30. 30.

    Ouzounov, D. G. et al. Generation of megawatt optical solitons in hollow-core photonic band-gap fibers. Science 301, 1702–1704 (2003).

    ADS  Article  Google Scholar 

  31. 31.

    Markos, C., Travers, J. C., Abdolvand, A., Eggleton, B. J. & Bang, O. Hybrid photonic-crystal fiber. Rev. Mod. Phys. 89, 045003 (2017).

    ADS  Article  Google Scholar 

  32. 32.

    Saleh, M. F. & Biancalana, F. Soliton dynamics in gas-filled hollow-core photonic crystal fibers. J. Opt. 18, 013002 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    Marcatili, E. & Schmeltzer, R. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 43, 1783–1809 (1964).

    Article  Google Scholar 

  34. 34.

    Robinson, J. et al. The generation of intense, transform-limited laser pulses with tunable duration from 6 to 30 fs in a differentially pumped hollow fibre. Appl. Phys. B 85, 525–529 (2006).

    ADS  Article  Google Scholar 

  35. 35.

    Bohman, S., Suda, A., Kanai, T., Yamaguchi, S. & Midorikawa, K. Generation of 5.0 fs, 5.0 mJ pulses at 1 kHz using hollow-fiber pulse compression. Opt. Lett. 35, 1887–1889 (2010).

    ADS  Article  Google Scholar 

  36. 36.

    Böhle, F. et al. Compression of CEP-stable multi-mJ laser pulses down to 4 fs in long hollow fibers. Laser Phys. Lett. 11, 095401 (2014).

    ADS  Article  Google Scholar 

  37. 37.

    Cardin, V. et al. 0.42 TW 2-cycle pulses at 1.8 μm via hollow-core fiber compression. Appl. Phys. Lett. 107, 181101 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Silva, F. et al. Strategies for achieving intense single-cycle pulses with in-line post-compression setups. Opt. Lett. 43, 337–340 (2018).

    ADS  Article  Google Scholar 

  39. 39.

    Jeong, Y.-G. et al. Direct compression of 170-fs 50-cycle pulses down to 1.5 cycles with 70% transmission. Sci. Rep. 8, 11794 (2018).

    ADS  Article  Google Scholar 

  40. 40.

    Husakou, A. & Herrmann, J. Soliton-effect pulse compression in the single-cycle regime in broadband dielectric-coated metallic hollow waveguides. Opt. Express 17, 17636–17644 (2009).

    ADS  Article  Google Scholar 

  41. 41.

    López-Zubieta, B. A., Jarque, E. C., Sola, Í. J. & Roman, J. S. Theoretical analysis of single-cycle self-compression of near infrared pulses using high-spatial modes in capillary fibers. Opt. Express 26, 6345–6350 (2018).

    ADS  Article  Google Scholar 

  42. 42.

    López-Zubieta, B. A., Jarque, E. C., Sola, Í. J. & Roman, J. S. Spatiotemporal-dressed optical solitons in hollow-core capillaries. OSA Continuum 1, 930–938 (2018).

    Article  Google Scholar 

  43. 43.

    Voronin, A. A. & Zheltikov, A. M. Subcycle solitonic breathers. Phys. Rev. A 90, 043807 (2014).

    ADS  Article  Google Scholar 

  44. 44.

    Zhao, R.-R., Wang, D., Zhao, Y., Leng, Y.-X. & Li, R.-X. Self-compression of 1.8-μm pulses in gas-filled hollow-core fibers. Chin. Phys. B 26, 104206 (2017).

    ADS  Article  Google Scholar 

  45. 45.

    Nagy, T., Forster, M. & Simon, P. Flexible hollow fiber for pulse compressors. Appl. Opt. 47, 3264–3268 (2008).

    ADS  Article  Google Scholar 

  46. 46.

    Nagy, T., Pervak, V. & Simon, P. Optimal pulse compression in long hollow fibers. Opt. Lett. 36, 4422–4424 (2011).

    ADS  Article  Google Scholar 

  47. 47.

    Hassan, M. T. et al. Optical attosecond pulses and tracking the nonlinear response of bound electrons. Nature 530, 66 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Agrawal, G. P. Nonlinear Fiber Optics (Academic Press, 2007).

  49. 49.

    Heyl, C. M. et al. Scale-invariant nonlinear optics in gases. Optica 3, 75–81 (2016).

    Article  Google Scholar 

  50. 50.

    Tani, F., Köttig, F., Novoa, D., Keding, R. & Russell, P. S. Effect of anti-crossings with cladding resonances on ultrafast nonlinear dynamics in gas-filled photonic crystal fibers. Photon. Res. 6, 84–88 (2018).

    Article  Google Scholar 

  51. 51.

    Kotsina, N. et al. Ultrafast molecular spectroscopy using a hollow-core photonic crystal fiber light source. J. Phys. Chem. Lett. 10, 715–720 (2019).

    Article  Google Scholar 

  52. 52.

    Beaud, P., Hodel, W., Zysset, B. & Weber, H. Ultrashort pulse propagation, pulse breakup, and fundamental soliton formation in a single-mode optical fiber. IEEE J. Quantum Electron. 23, 1938–1946 (1987).

    ADS  Article  Google Scholar 

  53. 53.

    Kodama, Y. & Hasegawa, A. Nonlinear pulse propagation in a monomode dielectric guide. IEEE J. Quantum Electron. 23, 510–524 (1987).

    ADS  Article  Google Scholar 

  54. 54.

    Husakou, A. V. & Herrmann, J. Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers. Phys. Rev. Lett. 87, 203901 (2001).

    ADS  Article  Google Scholar 

  55. 55.

    Hölzer, P. et al. Femtosecond nonlinear fiber optics in the ionization regime. Phys. Rev. Lett. 107, 203901 (2011).

    ADS  Article  Google Scholar 

  56. 56.

    Saleh, M. F. & Biancalana, F. Understanding the dynamics of photoionization-induced nonlinear effects and solitons in gas-filled hollow-core photonic crystal fibers. Phys. Rev. A 84, 063838 (2011).

    ADS  Article  Google Scholar 

  57. 57.

    Fibich, G. & Gaeta, A. L. Critical power for self-focusing in bulk media and in hollow waveguides. Opt. Lett. 25, 335–337 (2000).

    ADS  Article  Google Scholar 

  58. 58.

    Wirth, A. et al. Synthesized light transients. Science 334, 195–200 (2011).

    ADS  Article  Google Scholar 

  59. 59.

    Erkintalo, M., Xu, Y. Q., Murdoch, S. G., Dudley, J. M. & Genty, G. Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs. Phys. Rev. Lett. 109, 223904 (2012).

    ADS  Article  Google Scholar 

  60. 60.

    Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    ADS  Article  Google Scholar 

  61. 61.

    Austin, D. R., de Sterke, C. M., Eggleton, B. J. & Brown, T. G. Dispersive wave blue-shift in supercontinuum generation. Opt. Express 14, 11997–12007 (2006).

    ADS  Article  Google Scholar 

  62. 62.

    Tani, F., Travers, J. C. & Russell, P. S. Multimode ultrafast nonlinear optics in optical waveguides: numerical modeling and experiments in kagomé photonic-crystal fiber. J. Opt. Soc. Am. B 31, 311–320 (2014).

    ADS  Article  Google Scholar 

  63. 63.

    Li, Q., Kutz, J. N. & Wai, P. K. A. Cascaded higher-order soliton for non-adiabatic pulse compression. J. Opt. Soc. Am. B 27, 2180–2189 (2010).

    ADS  Article  Google Scholar 

  64. 64.

    Schenkel, B. et al. Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum. Opt. Lett. 28, 1987–1989 (2003).

    ADS  Article  Google Scholar 

  65. 65.

    Vozzi, C., Nisoli, M., Sansone, G., Stagira, S. & De Silvestri, S. Optimal spectral broadening in hollow-fiber compressor systems. Appl. Phys. B 80, 285–289 (2005).

    ADS  Article  Google Scholar 

  66. 66.

    Ghotbi, M., Beutler, M. & Noack, F. Generation of 2.5 μJ vacuum ultraviolet pulses with sub-50 fs duration by noncollinear four-wave mixing in argon. Opt. Lett. 35, 3492–3494 (2010).

    ADS  Article  Google Scholar 

  67. 67.

    Shi, L. et al. Generation of multicolor vacuum ultraviolet pulses through four-wave sum-frequency mixing in argon. Phys. Rev. A 88, 053825 (2013).

    ADS  Article  Google Scholar 

  68. 68.

    Zhou, H. et al. Efficient generation of vacuum and extreme ultraviolet pulses. Laser Phys. Lett. 11, 025402 (2014).

    ADS  Article  Google Scholar 

  69. 69.

    Brahms, C. et al. Direct characterization of tuneable few-femtosecond dispersive-wave pulses in the deep UV. Opt. Lett. 44, 731–734 (2019).

    ADS  Article  Google Scholar 

  70. 70.

    Ermolov, A., Valtna-Lukner, H., Travers, J. & Russell, P. S. Characterization of few-fs deep-UV dispersive waves by ultra-broadband transient-grating XFROG. Opt. Lett. 41, 5535–5538 (2016).

    ADS  Article  Google Scholar 

  71. 71.

    Chang, Y. et al. Tunable VUV photochemistry using vacuum ultraviolet free electron laser combined with H-atom Rydberg tagging time-of-flight spectroscopy. Rev. Sci. Instrum. 89, 063113 (2018).

    ADS  Article  Google Scholar 

  72. 72.

    Ayvazyan, V. et al. Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002).

    ADS  Article  Google Scholar 

  73. 73.

    Belli, F., Abdolvand, A., Travers, J. & J. Russell, P. St. J. Control of ultrafast pulses in a hydrogen-filled hollow-core photonic-crystal fiber by Raman coherence. Phys. Rev. A 97, 013814 (2018).

    ADS  Article  Google Scholar 

  74. 74.

    Sidorenko, P., Lahav, O., Avnat, Z. & Cohen, O. Ptychographic reconstruction algorithm for frequency-resolved optical gating: super-resolution and supreme robustness. Optica 3, 1320–1330 (2016).

    Article  Google Scholar 

  75. 75.

    Börzsönyi, A., Heiner, Z., Kalashnikov, M. P., Kovács, A. P. & Osvay, K. Dispersion measurement of inert gases and gas mixtures at 800 nm. Appl. Opt. 47, 4856–4863 (2008).

    ADS  Article  Google Scholar 

  76. 76.

    Lehmeier, H., Leupacher, W. & Penzkofer, A. Nonresonant third order hyperpolarizability of rare gases and N2 determined by third harmonic generation. Opt. Commun. 56, 67–72 (1985).

    ADS  Article  Google Scholar 

  77. 77.

    Kolesik, M. & Moloney, J. V. Nonlinear optical pulse propagation simulation: from Maxwell’s to unidirectional equations. Phys. Rev. E 70, 036604 (2004).

    ADS  Article  Google Scholar 

  78. 78.

    Geissler, M. et al. Light propagation in field-ionizing media: extreme nonlinear optics. Phys. Rev. Lett. 83, 2930–2933 (1999).

    ADS  Article  Google Scholar 

  79. 79.

    Perelomov, A. M., Popov, V. S. & Terent’ev, M. V. Ionization of atoms in an alternating electric field. J. Exp. Theor. Phys. 23, 924 (1966).

    ADS  Google Scholar 

  80. 80.

    Ilkov, F. A., Decker, J. E. & Chin, S. L. Ionization of atoms in the tunnelling regime with experimental evidence using Hg atoms. J. Phys. B 25, 4005 (1992).

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme: Starting Grant agreement HISOL no. 679649. This work used EPCCs Cirrus HPC Service (https://www.epcc.ed.ac.uk/cirrus).

Author information

Affiliations

Authors

Contributions

J.C.T. proposed this work, the initial theory and the experimental design. He also performed the numerical simulations and drafted the manuscript. All authors contributed to the experimental implementation and refinement, the analysis and discussion of the results, and the editing of the manuscript.

Corresponding author

Correspondence to John C. Travers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains more information about the work, Supplementary Figures 1–10 and Supplementary Tables 1–2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Travers, J.C., Grigorova, T.F., Brahms, C. et al. High-energy pulse self-compression and ultraviolet generation through soliton dynamics in hollow capillary fibres. Nat. Photonics 13, 547–554 (2019). https://doi.org/10.1038/s41566-019-0416-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing