Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stimulated Raman excited fluorescence spectroscopy and imaging


Powerful optical tools have revolutionized science and technology. The prevalent fluorescence detection offers superb sensitivity down to single molecules but lacks sufficient chemical information1,2,3. In contrast, Raman-based vibrational spectroscopy provides exquisite chemical specificity about molecular structure, dynamics and coupling, but is notoriously insensitive3,4,5. Here, we report a hybrid technique of stimulated Raman excited fluorescence (SREF) that integrates superb detection sensitivity and fine chemical specificity. Through stimulated Raman pumping to an intermediate vibrational eigenstate, followed by an upconversion to an electronic fluorescent state, SREF encodes vibrational resonance into the excitation spectrum of fluorescence emission. By harnessing the narrow vibrational linewidth, we demonstrated multiplexed SREF imaging in cells, breaking the ‘colour barrier’ of fluorescence. By leveraging the superb sensitivity of SREF, we achieved all-far-field single-molecule Raman spectroscopy and imaging without plasmonic enhancement, a long-sought-after goal in photonics. Thus, through merging Raman and fluorescence spectroscopy, SREF would be a valuable tool for chemistry and biology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Encoding vibrational features into fluorescence spectroscopy.
Fig. 2: SREF spectroscopy.
Fig. 3: Living-cell multicolour SREF microscopy.
Fig. 4: Single-molecule SREF spectroscopy and imaging.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Lakowicz, J. R. Principles of Fluorescence Spectroscopy 3rd edn (Springer US, New York, 2007).

  2. 2.

    Moerner, W. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

    ADS  Article  Google Scholar 

  3. 3.

    Schatz, G. C. & Ratner, M. A. Quantum Mechanics in Chemistry (Courier Corp., New York, 1993).

  4. 4.

    Herzberg, G. Infrared and Raman Spectra of Polyatomic Molecules Vol. 2 (D. Van Nostrand, New York, 1945).

  5. 5.

    Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  Google Scholar 

  6. 6.

    Seilmeier, A., Kaiser, W., Laubereau, A. & Fischer, S. A novel spectroscopy using ultrafast two-pulse excitation of large polyatomic molecules. Chem. Phys. Lett. 58, 225–229 (1978).

    ADS  Article  Google Scholar 

  7. 7.

    Hübner, H.-J., Wörner, M., Kaiser, W. & Seilmeier, A. Subpicosecond vibrational relaxation of skeletal modes in polyatomic molecules. Chem. Phys. Lett. 182, 315–320 (1991).

    ADS  Article  Google Scholar 

  8. 8.

    Mastron, J. N. & Tokmakoff, A. Two-photon-excited fluorescence-encoded infrared spectroscopy. J. Phys. Chem. A 120, 9178–9187 (2016).

    Article  Google Scholar 

  9. 9.

    Cheng, J. & Xie, X. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108, 827–840 (2004).

    Article  Google Scholar 

  10. 10.

    Min, W., Freudiger, C. W., Lu, S. & Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annu. Rev. Phys. Chem. 62, 507–530 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    Lee, S., Nguyen, D. & Wright, J. Double resonance excitation of fluorescence by stimulated Raman scattering. Appl. Spectrosc. 37, 472–474 (1983).

    ADS  Article  Google Scholar 

  12. 12.

    Shim, S., Stuart, C. M. & Mathies, R. A. Resonance Raman cross‐sections and vibronic analysis of Rhodamine 6G from broadband stimulated Raman spectroscopy. ChemPhysChem 9, 697–699 (2008).

    Article  Google Scholar 

  13. 13.

    Wei, L. & Min, W. Electronic preresonance stimulated Raman scattering microscopy. J. Phys. Chem. Lett. 9, 4294–4301 (2018).

    Article  Google Scholar 

  14. 14.

    Etchegoin, P. G., Le, Ru,E. C. & Meyer, M. Evidence of natural isotopic distribution from single-molecule SERS. J. Am. Chem. Soc. 131, 2713–2716 (2009).

    Article  Google Scholar 

  15. 15.

    Min, W. et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009).

    ADS  Article  Google Scholar 

  16. 16.

    Sperber, P., Spangler, W., Meier, B. & Penzkofer, A. Experimental and theoretical investigation of tunable picosecond pulse generation in longitudinally pumped dye laser generators and amplifiers. Opt. Quant. Electron. 20, 395–431 (1988).

    Article  Google Scholar 

  17. 17.

    Wei, L. et al. Super-multiplex vibrational imaging. Nature 544, 465–470 (2017).

    ADS  Article  Google Scholar 

  18. 18.

    Dean, K. M. & Palmer, A. E. Advances in fluorescence labeling strategies for dynamic cellular imaging. Nat. Chem. Biol. 10, 512–523 (2014).

    Article  Google Scholar 

  19. 19.

    Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    ADS  Article  Google Scholar 

  20. 20.

    Sonntag, M. D. et al. Single-molecule tip-enhanced Raman spectroscopy. J. Phys. Chem. C 116, 478–483 (2011).

    Article  Google Scholar 

  21. 21.

    Yampolsky, S. et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nat. Photon. 8, 650–656 (2014).

    ADS  Article  Google Scholar 

  22. 22.

    Zhang, Y. et al. Coherent anti-Stokes Raman scattering with single-molecule sensitivity using a plasmonic Fano resonance. Nat. Commun. 5, 4424 (2014).

    Article  Google Scholar 

  23. 23.

    Mahmoudi, M. et al. Protein–nanoparticle interactions: opportunities and challenges. Chem. Rev. 111, 5610–5637 (2011).

    Article  Google Scholar 

  24. 24.

    Macklin, J., Trautman, J., Harris, T. & Brus, L. Imaging and time-resolved spectroscopy of single molecules at an interface. Science 272, 255–258 (1996).

    ADS  Article  Google Scholar 

  25. 25.

    Nie, S., Chiu, D. T. & Zare, R. N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994).

    ADS  Article  Google Scholar 

  26. 26.

    Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).

    Article  Google Scholar 

  27. 27.

    Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

    Article  Google Scholar 

  28. 28.

    Gaiduk, A., Yorulmaz, M., Ruijgrok, P. & Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330, 353–356 (2010).

    ADS  Article  Google Scholar 

  29. 29.

    Zrimsek, A. et al. Single-molecule chemistry with surface- and tip-enhanced Raman spectroscopy. Chem. Rev. 117, 7583–7613 (2017).

    Article  Google Scholar 

  30. 30.

    Winterhalder, M., Zumbusch, A., Lippitz, M. & Orrit, M. Toward far-field vibrational spectroscopy of single molecules at room temperature. J. Phys. Chem. B 115, 5425–5430 (2011).

    Article  Google Scholar 

  31. 31.

    Brinks, D. et al. Ultrafast dynamics of single molecules. Chem. Soc. Rev. 43, 2476–2491 (2014).

    Article  Google Scholar 

  32. 32.

    Kukura, P., McCamant, D. W. & Mathies, R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 58, 461–488 (2007).

    ADS  Article  Google Scholar 

  33. 33.

    Siegman, A. E. Lasers. (University Science Books, Mill Valley, CA, 1986).

    Google Scholar 

  34. 34.

    Wright, J. C. Double resonance excitation of fluorescence in the condensed phase—an alternative to Infrared, Raman, and fluorescence spectroscopy. Appl. Spectrosc. 34, 151–157 (1980).

    ADS  Article  Google Scholar 

  35. 35.

    Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nat. Biotechnol. 21, 1369–1377 (2003).

    Article  Google Scholar 

Download references


We are grateful for discussions with L. E. Brus and X. Y. Zhu. This work was supported by grant R01GM128214 from the NIH, and by the Camille and Henry Dreyfus Foundation.

Author information




H.X. and L.S. collected and analysed all the data; H.X. designed and constructed the instrument with the help of L.S. and Z.Z. under the guidance of W.M.; L.W. and Y.S. contributed to the early phase of the spectroscopy project; R.L. performed chemical synthesis; W.M. conceived the concept; H.X., L.S. and W.M. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Wei Min.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Shi, L., Wei, L. et al. Stimulated Raman excited fluorescence spectroscopy and imaging. Nat. Photonics 13, 412–417 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing