Holography is the most promising route to true-to-life three-dimensional (3D) projections, but the incorporation of complex images with full depth control remains elusive. Digitally synthesized holograms1,2,3,4,5,6,7, which do not require real objects to create a hologram, offer the possibility of dynamic projection of 3D video8,9. Despite extensive efforts aimed at 3D holographic projection10,11,12,13,14,15,16,17, however, the available methods remain limited to creating images on a few planes10,11,12, over a narrow depth of field13,14 or with low resolution15,16,17. Truly 3D holography also requires full depth control and dynamic projection capabilities, which are hampered by high crosstalk9,18. The fundamental difficulty is in storing all the information necessary to depict a complex 3D image in the 2D form of a hologram without letting projections at different depths contaminate each other. Here, we solve this problem by pre-shaping the wavefronts to locally reduce Fresnel diffraction to Fourier holography, which allows the inclusion of random phase for each depth without altering the image projection at that particular depth, but eliminates crosstalk due to the near-orthogonality of large-dimensional random vectors. We demonstrate Fresnel holograms that form on-axis with full depth control without any crosstalk, producing large-volume, high-density, dynamic 3D projections with 1,000 image planes simultaneously, improving the state of the art12,17 for the number of simultaneously created planes by two orders of magnitude. Although our proof-of-principle experiments use spatial light modulators, our solution is applicable to all types of holographic media.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding authors upon reasonable request.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Change history

  • 02 April 2019

    In the version of this Letter originally published, Supplementary Videos 1–3 were linked to the wrong files; this has now been amended.


  1. 1.

    Goodman, J. W. Introduction to Fourier Optics (Roberts & Company, 2005).

  2. 2.

    Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

  3. 3.

    Arbabi, A., Horie, Y., Bagheri, M. & Faraon, A. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol. 10, 937–943 (2015).

  4. 4.

    Zheng, G. X. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

  5. 5.

    Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

  6. 6.

    Tokel, O. et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon. Nat. Photon. 11, 639–645 (2017).

  7. 7.

    Melde, K., Mark, A. G., Qui, T. & Fisher, P. Holograms for acoustics. Nature 537, 518–522 (2016).

  8. 8.

    Smalley, D. E., Smithwick, Q. Y. J., Bove, V. M., Barabas, J. & Jolly, S. Anisotropic leaky-mode modulator for holographic video displays. Nature 498, 313–317 (2013).

  9. 9.

    Sugie, T. et al. High-performance parallel computing for next-generation holographic imaging. Nat. Electron. 1, 254–259 (2018).

  10. 10.

    Dorsch, R. G., Lohmann, A. W. & Sinzinger, S. Fresnel ping-pong algorithm for two-plane computer-generated hologram display. Appl. Opt. 33, 869–875 (1994).

  11. 11.

    Hernandez, O. et al. Three-dimensional spatiotemporal focusing of holographic patterns. Nat. Commun. 7, 11928 (2016).

  12. 12.

    Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

  13. 13.

    Wakunami, K. et al. Projection-type see-through holographic three-dimensional display. Nat. Commun. 7, 12954 (2016).

  14. 14.

    Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

  15. 15.

    Kim, S.-C. & Kim, E.-S. Fast computation of hologram patterns of a 3D object using run-length encoding and novel look-up table methods. Appl. Opt. 48, 1030–1041 (2009).

  16. 16.

    Huang, L. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

  17. 17.

    Yu, H., Lee, K., Park, J. & Park, Y. Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nat. Photon. 11, 186–192 (2017).

  18. 18.

    Li, X. et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv. 2, e1601102 (2016).

  19. 19.

    Gabor, D. A new microscopic principle. Nature 161, 777–718 (1948).

  20. 20.

    Gabor, D., Kock, W. E. & Stroke, G. W. Holography. Science 173, 11–23 (1971).

  21. 21.

    Yaras, F., Kang, H. & Onural, L. State of the art in holographic displays: a survey. J. Disp. Tech. 6, 443–454 (2010).

  22. 22.

    Tsang, P. W. M. & Poon, T. C. Review on the state-of-the-art technologies for acquisition and display of digital holograms. IEEE Trans. Industr. Inform. 12, 886–901 (2016).

  23. 23.

    Khorasaninejad, M., Ambrosio, A., Kanhaiya, P. & Capasso, F. Broadband and chiral binary dielectric meta-holograms. Sci. Adv. 2, e1501258 (2016).

  24. 24.

    Maimone, A., Georgiou, A. & Kollin, J. S. Holographic near-eye displays for virtual and augmented reality. ACM Trans. Graph. 36, 85 (2017).

  25. 25.

    Li, X. P. et al. Athermally photoreduced graphene oxides for three-dimensional holographic images. Nat. Commun. 6, 6984 (2015).

  26. 26.

    Blanche, P. A. et al. Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature 468, 80–83 (2010).

  27. 27.

    Lesem, L. B., Hirsch, P. M. & Jordan, J. A. The kinoform: a new wavefront reconstruction device. IBM J. Res. Dev. 13, 150–155 (1969).

  28. 28.

    Makey, G., El-Daher, M. S. & Al-Shufi, K. Utilization of a liquid crystal spatial light modulator in a gray scale detour phase method for Fourier holograms. Appl. Opt. 51, 7877–7882 (2012).

  29. 29.

    Benton, S. A. & Bove, V. M. Holographic Imaging (Wiley-Interscience, 2008).

  30. 30.

    Jackin, B. J. & Yatagai, T. 360 degrees reconstruction of a 3D object using cylindrical computer generated holography. Appl. Opt. 50, H147–H152 (2011).

  31. 31.

    Gülses, A. A. & Jenkins, B. K. Cascaded diffractive optical elements for improved multiplane image reconstruction. Appl. Opt. 52, 3608–3616 (2013).

  32. 32.

    Dufresne, E., Spalding, G., Dearing, M., Sheets, S. & Grier, D. Computer generated holographic optical tweezer arrays. Rev. Sci. Instrum. 72, 1810–1816 (2001).

  33. 33.

    Hsu, C. W. et al. Transparent displays enabled by resonant nanoparticle scattering. Nat. Commun. 5, 3152 (2014).

  34. 34.

    Furuya, M., Sterling, R., Bleha, W. & Inoue, Y. D-ILA full resolution 8K projector. In SMPTE Annu. Tech. Conf. Expo (SMPTE, 2009).

  35. 35.

    Smalley, D. E. et al. A photophoretic-trap volumetric display. Nature 553, 486–490 (2018).

  36. 36.

    Yue, Z., Xue, G., Liu, J., Wang, Y. & Gu, M. Nanometric holograms based on a topological insulator material. Nat. Commun. 8, 15354 (2017).

  37. 37.

    Segev, M., Silberberg, Y. & Christodoulides, D. N. Anderson localization of light. Nat. Photon. 7, 197–204 (2013).

  38. 38.

    Engheta, N. Pursuing near-zero response. Science 340, 286–287 (2013).

  39. 39.

    Gorban, A. N. & Tyukin, I. Y. Blessing of dimensionality: mathematical foundations of the statistical physics of data. Philos. Trans. A Math. Phys. Eng. Sci. 376, 20170237 (2018).

  40. 40.

    Révész, P. The Laws of Large Numbers (Academic Press, 1967).

Download references


This work was supported partially by the European Research Council (ERC) Consolidator Grant ERC-617521 NLL, TÜBITAK under project 117E823 and the BAGEP Award of the Science Academy. The authors thank J. Toumi and M.S. El-Daher for discussions, L. Onural for critical reading of the manuscript and M. Yaman for inspiration.

Author information


  1. UNAM – National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey

    • Ghaith Makey
    • , Parviz Elahi
    • , Serim Ilday
    • , Onur Tokel
    •  & F. Ömer Ilday
  2. Department of Physics, Bilkent University, Ankara, Turkey

    • Ghaith Makey
    • , Parviz Elahi
    • , Onur Tokel
    •  & F. Ömer Ilday
  3. Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey

    • Özgün Yavuz
    • , Denizhan K. Kesim
    • , Ahmet Turnalı
    •  & F. Ömer Ilday


  1. Search for Ghaith Makey in:

  2. Search for Özgün Yavuz in:

  3. Search for Denizhan K. Kesim in:

  4. Search for Ahmet Turnalı in:

  5. Search for Parviz Elahi in:

  6. Search for Serim Ilday in:

  7. Search for Onur Tokel in:

  8. Search for F. Ömer Ilday in:


G.M., O.T. and F.Ö.I. designed the research and interpreted the results with help from S.I. and Ö.Y. Experiments and simulations were performed by G.M., D.K.K., Ö.Y., A.T., O.T. and P.E.

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Onur Tokel or F. Ömer Ilday.

Supplementary information

  1. Supplementary Information

    This file contains more information about the work and Supplementary Figures 1–11.

  2. Supplementary Video 1

    Simultaneous 1,000-plane projection from a 3D Fresnel hologram.

  3. Supplementary Video 2

    Full solid angle projection.

  4. Supplementary Video 3

    Simultaneous 21-plane projection from a 3D Fresnel hologram.

  5. Supplementary Video 4

    3D dynamic display prototype.

About this article

Publication history




Issue Date