Review Article | Published:

The emergence and prospects of deep-ultraviolet light-emitting diode technologies

Nature Photonicsvolume 13pages233244 (2019) | Download Citation


By alloying GaN with AlN the emission of AlGaN light-emitting diodes can be tuned to cover almost the entire ultraviolet spectral range (210–400 nm), making ultraviolet light-emitting diodes perfectly suited to applications across a wide number of fields, whether biological, environmental, industrial or medical. However, technical developments notwithstanding, deep-ultraviolet light-emitting diodes still exhibit relatively low external quantum efficiencies because of properties intrinsic to aluminium-rich group III nitride materials. Here, we review recent progress in the development of AlGaN-based deep-ultraviolet light-emitting devices. We also describe the key obstacles to enhancing their efficiency and how to improve their performance in terms of defect density, carrier-injection efficiency, light extraction efficiency and heat dissipation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Akasaki, I., Amano, H., Hiramatsu, K. & Sawaki, N. High efficiency blue LED utilizing GaN film with AlN buffer layer grown by MOVPE. Proc. 14th Int. Symp. Gallium Arsenide and Related Compounds 1987, 633–636 (1988).

  2. 2.

    Amano, H. & Akasaki, I. GaN blue and ultraviolet light emitting devices. Solid State Phys. 25, 399–405 (1990).

  3. 3.

    Nakamura, S., Mukai, T. & Senoh, M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes. Appl. Phys. Lett. 64, 1687–1689 (1994).

  4. 4.

    Narukawa, Y., Ichikawa, M., Sanga, D., Sano, M. & Mukai, T. White light emitting diodes with super-high luminous efficacy. J. Phys. D 43, 354002 (2010).

  5. 5.

    Kneissl, M. & Rass, J. (eds) III-Nitride Ultraviolet Emitters–Technology and Applications (Springer, 2016).

  6. 6.

    Kowalski, W. Ultraviolet Germicidal Irradiation Handbook (Springer, 2009).

  7. 7.

    Crawford, M. H. et al. Final LDRD Report: Ultraviolet Water Purification Systems for Rural Environments and Mobile Applications Sandia Report SAND2005-7245 (Sandia National Laboratories, 2005).

  8. 8.

    Würtele, M.-A. et al. Application of GaN-based deep ultraviolet light emitting diodes–UV LEDs for water disinfection. Water Res. 45, 1481–1489 (2011).

  9. 9.

    Neckers, D. C. et al. Performance of the light emitting diodes versus conventional light sources in the UV light cured formulations. J. Appl. Polym. Sci. 105, 803–808 (2007).

  10. 10.

    Endruweit, A. et al. Curing of composite components by ultraviolet radiation: a review. Polym. Comp. 27, 119–128 (2006).

  11. 11.

    Decker, C. et al. The use of UV irradiation in polymerization. Polym. Int. 45, 133–141 (1998).

  12. 12.

    Schreiner, M., Martínez-Abaigar, J., Glaab, J. & Jansen, M. UVB induced secondary plant metabolites. Opt. Photon. 9, 34–37 (2014).

  13. 13.

    Hockberger, P. E. A history of ultraviolet photobiology for humans, animals and microorganisms. Photochem. Photobiol. 76, 561–579 (2002).

  14. 14.

    Hargis, P.-J. Jr, Sobering, T.-J., Tisone, G.-C. & Wagner, J.-S. Ultraviolet fluorescence detection and identification of protein. DNA, and bacteria. Proc. SPIE 2366, 147–153 (1995).

  15. 15.

    Mellqvist, J. & Rosen, A. DOAS for flue gas monitoring—I. Temperature effects in the UV/visible absorption spectra of NO, NO2, SO2 and NH3. J. Quant. Spectrosc. Radiat. Transf. 56, 187–208 (1996).

  16. 16.

    Hodgkinson, J. & Tatam, R.-P. Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013).

  17. 17.

    Tsuzuki, H. et al. High-performance UV emitter grown on high-crystalline quality AlGaN underlying layer. Phys. Status Solidi (a) 206, 1199–1204 (2009).

  18. 18.

    Zhang, J. et al. AlGaN deep-ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 44, 7250–7253 (2005).

  19. 19.

    Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2, 77–84 (2008).

  20. 20.

    Hirayama, H. et al. 222–282 nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire. Phys. Status Solidi (a) 206, 1176–1182 (2009).

  21. 21.

    Hirayama, H., Tsukada, Y., Maeda, Y. & Kamata, N. Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer. Appl. Phys. Express 3, 031002 (2010).

  22. 22.

    Pernot, C. et al. Improved efficiency of 255–280 nm AlGaN-based light-emitting diodes. Appl. Phys. Express 3, 061004 (2010).

  23. 23.

    Grandusky, J. R. et al. High output power from 260 nm pseudomorphic ultraviolet light-emitting diodes with improved thermal performance. Appl. Phys. Express 4, 082101 (2011).

  24. 24.

    Kneissl, M. et al. Advances in group III-nitride based deep UV light emitting diode technology. Semicond. Sci. Technol. 26, 014036 (2011).

  25. 25.

    Shatalov, M. et al. AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%. Appl. Phys. Express 5, 082101 (2012).

  26. 26.

    Kinoshita, T. et al. Performance and reliability of deep-ultraviolet light-emitting diodes fabricated on AlN substrates prepared by hydride vapor phase epitaxy. Appl. Phys. Express 6, 092103 (2013).

  27. 27.

    Grandusky, J. R. et al. 270 nm pseudomorphic ultraviolet light-emitting diodes with over 60 mW continuous wave output power. Appl. Phys. Express 6, 032101 (2013).

  28. 28.

    Mehnke, F. et al. Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes. Appl. Phys. Lett. 105, 051113 (2014).

  29. 29.

    Takano, T. et al. Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10, 031002 (2017).

  30. 30.

    Inoue, S., Tamari, N. & Taniguchi, M. 150 mW deep-ultraviolet light-emitting diodes with large-area AlN nanophotonic light-extraction structure emitting at 265 nm. Appl. Phys. Lett. 110, 141106 (2017).

  31. 31.

    Choi, R. Current status and future works of high-power deep UV LEDs. Proc SPIE 10104, 101041N (2017).

  32. 32.

    LG Innotek unveils the world’s first ‘100mW’ UV-C LED (LG Innotek, 27 November 2017).

  33. 33.

    Hirayama, H. et al. Over 10% EQE AlGaN deep-UV LED using transparent p-AlGaN contact layer. Proc. SPIE 10104, 101041P (2017).

  34. 34.

    Scheidt, P. Thermal management of LED technology in applications. LED Profession. Rev. 4, 19–21 (2007).

  35. 35.

    Meneghini, M., Barbisan, D., Rodighiero, L., Meneghesso, G. & Zanoni, E. Analysis of the physical processes responsible for the degradation of deep-ultraviolet light emitting diodes. Appl. Phys. Lett. 97, 143506 (2010).

  36. 36.

    Glaab, J. et al. Degradation effects of the active region in UV-C light-emitting diodes. J. Appl. Phys. 123, 104502 (2018).

  37. 37.

    Fujioka, A. et al. High-output-power 255/280/310 nm deep ultraviolet light-emitting diodes and their lifetime characteristics. Semicond. Sci. Technol. 29, 084005 (2014).

  38. 38.

    Nagasawa, Y. et al. A review of AlGaN-based deep-ultraviolet light-emitting diodes on sapphire. Appl. Sci. 8, 1264 (2018).

  39. 39.

    Reentilä, O. et al. Effect of the AlN nucleation layer growth on AlN material quality. J. Cryst. Growth 310, 4932–4934 (2008).

  40. 40.

    Mickevičius, J. et al. Internal quantum efficiency in AlGaN with strong carrier localization. Appl. Phys. Lett. 101, 211902 (2012).

  41. 41.

    Ban, K. et al. Internal quantum efficiency of whole-composition-range AlGaN multiquantum wells. Appl. Phys. Express 4, 052101 (2011).

  42. 42.

    Chichibu, S., Azuhata, T., Sota, T. & Nakamura, S. Luminescences from localized states in InGaN epilayers. Appl. Phys. Lett. 70, 2822–2824 (1997).

  43. 43.

    Chichibu, S. F. et al. Origin of defect-insensitive emission probability in In-containing (Al,In,Ga)N alloy semiconductors. Nat. Mater. 5, 810–816 (2006).

  44. 44.

    Mickevicius, J. et al. Photoluminescence dynamics of AlGaN quantum wells with built-in electric fields and localized states. Phys. Stat. Sol. (a) 207, 423–427 (2010).

  45. 45.

    Jain, R. et al. Migration enhanced lateral epitaxial overgrowth of AlN and AlGaN for high reliability deep ultraviolet light emitting diodes. Appl. Phys. Lett. 93, 051113 (2008).

  46. 46.

    Liu, X.-H. et al. Influence of growth temperature on intrinsic stress distribution in aluminum nitride grown by hydride vapor phase epitaxy. Mater. Express 6, 367–370 (2016).

  47. 47.

    Huang, C.-Y. et al. High-quality and highly-transparent AlN template on annealed sputter-deposited AlN buffer layer for deep ultra-violet light-emitting diodes. AIP Adv. 7, 055110 (2017).

  48. 48.

    Kueller, V. et al. (Al,Ga)N overgrowth over AlN ridges oriented in [1120] and [1100] direction. Phys. Status Solidi (c) 8, 2022–2024 (2011).

  49. 49.

    Kawashima, T. et al. High-quality Al0.12Ga0.88N film with low dislocation density grown on facet-controlled Al0.12Ga0.88N by MOVPE. J. Cryst. Growth 272, 377–380 (2004).

  50. 50.

    Susilo, N. et al. AlGaN-based deep UV LEDs grown on sputtered and high temperature annealed AlN/sapphire. Appl. Phys. Lett. 112, 041110 (2018).

  51. 51.

    Lin, B. C. et al. Performance enhancement of GaN-based flip-chip ultraviolet light-emitting diodes with a RPD AlN nucleation layer on patterned sapphire substrate. Opt. Mater. Express 4, 1632–1639 (2014).

  52. 52.

    Lee, C.-Y. et al. Efficiency improvement of GaN-based ultraviolet light-emitting diodes with reactive plasma deposited AlN nucleation layer on patterned sapphire substrate. Nanoscale Res. Lett. 9, 505 (2014).

  53. 53.

    Yan, J. et al. AlGaN-based deep-ultraviolet light-emitting diodes grown on high-quality AlN template using MOVPE. J. Cryst. Growth 414, 254–257 (2015).

  54. 54.

    Al Tahtamouni, T. M., Lin, J. Y. & Jiang, H. X. Effects of double layer AlN buffer layers on properties of Si-doped AlxGa1–xN for improved performance of deep ultraviolet light emitting diodes. J. Appl. Phys. 113, 123501 (2013).

  55. 55.

    Miyake, H. et al. Annealing of an AlN buffer layer in N2–CO for growth of a high-quality AlN film on sapphire. Appl. Phys. Express 9, 025501 (2016).

  56. 56.

    Lee, D. et al. Improved performance of AlGaN-based deep ultraviolet light-emitting diodes with nano-patterned AlN/sapphire substrates. Appl. Phys. Lett. 110, 191103 (2017).

  57. 57.

    Kim, J., Pyeon, J., Jeon, M. & Nam, O. Growth and characterization of high quality AlN using combined structure of low temperature buffer and superlattices for applications in the deep ultraviolet. Jpn. J. Appl. Phys. 54, 081001 (2015).

  58. 58.

    Wang, T.-Y., Tasi, C.-T., Lin, C.-F. & Wuu, D.-S. 85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering. Sci. Rep. 7, 14422 (2017).

  59. 59.

    Heying, B. et al. Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films. Appl. Phys. Lett. 68, 643–645 (1996).

  60. 60.

    Lee, S. R. et al. Effect of threading dislocations on the Bragg peakwidths of GaN, AlGaN, and AlN heterolayers. Appl. Phys. Lett. 86, 241904 (2005).

  61. 61.

    Chierchia, R. et al. Microstructure of heteroepitaxial GaN revealed by x-ray diffraction. J. Appl. Phys. 93, 8918–8925 (2003).

  62. 62.

    Hino, T. et al. Characterization of threading dislocations in GaN epitaxial layers. Appl. Phys. Lett. 76, 3421–3423 (2000).

  63. 63.

    Kusch, G. et al. Spatial clustering of defect luminescence centers in Si-doped low resistivity Al0.82Ga0.18N. Appl. Phys. Lett. 107, 072103 (2015).

  64. 64.

    Bondokov, R. T. et al. Large-area AlN substrates for electronic applications: an industrial perspective. J. Crys. Growth 310, 4020–4026 (2008).

  65. 65.

    Ding, K., Avrutin, V., Özgür, Ü. & Morkoç, H. Status of growth of group III-nitride heterostructures for deep ultraviolet light-emitting diodes. Crystals 7, 300 (2017).

  66. 66.

    Rojo, J. C. et al. Report on the growth of bulk aluminum nitride and subsequent substrate preparation. J. Cryst. Growth 231, 317–321 (2001).

  67. 67.

    Hartmann, C., Dittmar, A., Wollweber, J. & Bickermann, M. Bulk AlN growth by physical vapour transport. Semicond. Sci. Technol. 29, 084002 (2014).

  68. 68.

    Dalmau, R., Moody, B., Xie, J., Collazo, R. & Sitar, Z. Characterization of dislocation arrays in AlN single crystals grown by PVT. Phys. Status Solidi (a) 208, 1545–1547 (2011).

  69. 69.

    Kangawa, Y., Toki, R., Yayama, T., Epelbaum, B. M. & Kakimoto, K. Novel solution growth method of bulk AlN using Al and Li3N solid sources. Appl. Phys. Express 4, 095501 (2011).

  70. 70.

    Kumagai, Y., Nagashima, T. & Koukitu, A. Preparation of a freestanding AlN substrate by hydride vapor phase epitaxy at 1230 °C using (111) Si as a starting substrate. Jpn. J. Appl. Phys. 46, L389–L391 (2007).

  71. 71.

    Hartmann, C. et al. Preparation of deep UV transparent AlN substrates with high structural perfection for optoelectronic devices. CrystEngComm 18, 3488–3497 (2016).

  72. 72.

    Nomura, T. et al. AlN homoepitaxial growth on sublimation-AlN substrate by low-pressure HVPE. J. Cryst. Growth 350, 69–71 (2012).

  73. 73.

    Irmscher, K. et al. Identification of a tri-carbon defect and its relation to the ultraviolet absorption in aluminum nitride. J. Appl. Phys. 114, 123505 (2013).

  74. 74.

    Bryan, Z. et al. High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl. Phys. Lett. 106, 142107 (2015).

  75. 75.

    Karpov, S. U. et al. Dislocation effect on light emission efficiency in gallium nitride. Appl. Phys. Lett. 81, 4721–4723 (2002).

  76. 76.

    Hirayama, H. et al. Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes. J. Appl. Phys. 97, 091101 (2005).

  77. 77.

    Kaneda, M. et al. Uneven AlGaN multiple quantum well for deep-ultraviolet LEDs grown on macrosteps and impact on electroluminescence spectral output. Jpn. J. Appl. Phys. 56, 061002 (2017).

  78. 78.

    Sampath, A. V., Garrett, G. A., Readinger, E. D., Enck, R. W. & Shen, H. Characterization of nanometer scale compositionally inhomogeneous AlGaN active regions on bulk AlN substrates. Solid State Electron. 54, 1130–1134 (2010).

  79. 79.

    Murotani, H. et al. Dependence of internal quantum efficiency on doping region and Si concentration in Al-rich AlGaN quantum wells. Appl. Phys. Lett. 101, 042110 (2012).

  80. 80.

    Kim, M.-H. et al. Origin of efficiency droop in GaN-based light-emitting diodes. Appl. Phys. Lett. 91, 183507 (2007).

  81. 81.

    Taniyasu, Y., Kasu, M. & Kobayashi, N. Intentional control of n-type conduction for Si-doped AlN and AlxGa1-xN (0.42≤x<1). Appl. Phys. Lett. 81, 1255–1257 (2002).

  82. 82.

    Nakarmi, M. L., Kim, K. H., Zhu, K., Lin, J. Y. & Jiang, H. X. Transport properties of highly conductive n-type Al-rich AlxGa1-xN (x≥0.7). Appl. Phys. Lett. 85, 3769–3771 (2004).

  83. 83.

    Mehnke, F. et al. Highly conductive n-AlxGa1–xN layers with aluminum mole fractions above 80%.Appl. Phys. Lett. 103, 212109 (2013).

  84. 84.

    Rajan, S. et al. Electron mobility in graded AlGaN alloys. Appl. Phys. Lett. 88, 042103 (2006).

  85. 85.

    Eiting, C. J. et al. P- and N-type doping of GaN and AlGaN epitaxial layers grown by metalorganic chemical vapor deposition. J. Electron. Mater. 27, 206–209 (1998).

  86. 86.

    Nagata, N. et al. Reduction of contact resistance in V-based electrode for high AlN molar fraction n-type AlGaN by using thin SiNx intermediate layer. Phys. Status Solidi (c) 14, 1600243 (2017).

  87. 87.

    Mattila, T. & Nieminen, R. M. Ab initio study of oxygen point defects in GaAs, GaN, and AlN. Phys. Rev. B 54, 16676–16682 (1996).

  88. 88.

    Van de Walle, C. G. & Neugebauer, J. First-principles calculations for defects and impurities: applications to III-nitrides. J. Appl. Phys. 95, 3851–3879 (2004).

  89. 89.

    Trinh, X. T. et al. Stable and metastable Si negative-U centers in AlGaN and AlN. Appl. Phys. Lett. 105, 162106 (2014).

  90. 90.

    Bogusławski, P. & Bernholc, J. Doping properties of C, Si, and Ge impurities in GaN and AlN. Phys. Rev. B 56, 9496–9505 (1997).

  91. 91.

    Zhu, S. et al. The effect of delta-doping on Si-doped Al rich n-AlGaN on AlN template grown by MOCVD. Phys. Status Solidi (c) 11, 466–468 (2014).

  92. 92.

    Cantu, P., Keller, S., Mishra, U. K. & DenBaars, S. P. Metalorganic chemical vapor deposition of highly conductive Al0.65Ga0.35N films. Appl. Phys. Lett. 82, 3683–3685 (2003).

  93. 93.

    Wang, S., Zhang, X., Zhu, M., Li, F. & Cui, Y. Crack-free Si-doped n-AlGaN film grown on sapphire substrate with high-temperature AlN interlayer. Optik 126, 3698–3702 (2015).

  94. 94.

    Adhikari, R., Li, T., Capuzzo, G. & Bonanni, A. Controlling a three-dimensional electron slab of graded AlxGa1–xN. Appl. Phys. Lett. 108, 022105 (2016).

  95. 95.

    Gordon, L. et al. Hybrid functional calculations of DX centers in AlN and GaN. Phys. Rev. B 89, 085204 (2014).

  96. 96.

    Kirste, R. et al. Ge doped GaN with controllable high carrier concentration for plasmonic applications. Appl. Phys. Lett. 103, 242107 (2013).

  97. 97.

    Tersoff, J. Theory of semiconductor heterojunctions: the role of quantum dipoles. Phys. Rev. B 30, 4874–4877 (1984).

  98. 98.

    Walukiewicz, W. Amphoteric native defects in semiconductors. Appl. Phys. Lett. 54, 2094–2096 (1989).

  99. 99.

    Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn. J. Appl. Phys. 28, L2112–L2114 (1989).

  100. 100.

    Nakamura, S. et al. Thermal annealing effects on p-type Mg-doped GaN films. Jpn. J. Appl. Phys. 31, L139–L142 (1992).

  101. 101.

    Nam, K. B., Nakarmi, M. L., Li, J., Lin, J. Y. & Jiang, H. X. Mg acceptor level in AlN probed by deep ultraviolet photoluminescence. Appl. Phys. Lett. 83, 878–880 (2003).

  102. 102.

    Allerman, A. A., Crawford, M. H., Miller, M. A. & Lee, S. R. Growth and characterization of Mg-doped AlGaN-AlN short-period superlattices for deep-UV optoelectronic devices. J. Crys. Growth 312, 756–761 (2010).

  103. 103.

    Zheng, T. C. et al. Improved p-type conductivity in Al-rich AlGaN using multidimensional Mg-doped superlattices. Sci. Rep. 6, 21897 (2016).

  104. 104.

    Simon, J., Protasenko, V., Lian, C., Xing, H. & Jena, D. Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010).

  105. 105.

    Ebata, K., Nishinaka, J., Taniyasu, Y. & Kumakura, K. High hole concentration in Mg-doped AlN/AlGaN superlattices with high Al content. Jpn. J. Appl. Phys. 57, 04FH09 (2018).

  106. 106.

    Jeon, S.-R. et al. Investigation of Mg doping in high-Al content p-type AlxGa1–xN (0.3<x<0.5). Appl. Phys. Lett. 86, 082107 (2005).

  107. 107.

    Neugebauer, J. & Van de Walle, C. G. Role of hydrogen in doping of GaN. Appl. Phys. Lett. 68, 1829–1831 (1996).

  108. 108.

    Kinoshita, T., Obata, T., Yanagi, H. & Inoue, S. High p-type conduction in high-Al content Mg-doped AlGaN. Appl. Phys. Lett. 102, 012105 (2013).

  109. 109.

    Aoyagi, Y., Takeuchi, M., Iwai, S. & Hirayama, H. High hole carrier concentration realized by alternative co-doping technique in metal organic chemical vapor deposition. Appl. Phys. Lett. 99, 112110 (2011).

  110. 110.

    Nakarmi, M. L., Kim, K. H., Li, J., Lin, J. Y. & Jiang, H. X. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82, 3041–3043 (2003).

  111. 111.

    Limpijumnong, S. & Van de Walle, C. G. Passivation and doping due to hydrogen in III-nitrides. Phys. Status Solidi (b) 228, 303–307 (2001).

  112. 112.

    Myers, S. M. et al. Diffusion, release, and uptake of hydrogen in magnesium-doped gallium nitride: theory and experiment. J. Appl. Phys. 89, 3195–3202 (2001).

  113. 113.

    Zvanut, M. E., Sunay, U. R., Dashdorj, J., Willoughby, W. R. & Allerman, A. A. Mg-hydrogen interaction in AlGaN alloys. In Gallium Nitride Materials and Devices VII 8262, 82620L (International Society for Optics and Photonics, 2012).

  114. 114.

    Dahal, R. et al. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett. 98, 211110 (2011).

  115. 115.

    Yan, J. et al. Improved performance of UV LED by p-AlGaN with graded composition. Phys. Status Solidi (c) 8, 461–463 (2011).

  116. 116.

    Kuo, Y.-K., Chang, J.-Y., Chen, F.-M., Shih, Y.-H. & Chang, H.-T. Numerical investigation on the carrier transport characteristics of AlGaN deep-UV light-emitting diodes. IEEE J. Quantum Electron. 52, 3300105 (2016).

  117. 117.

    Maeda, N. & Hirayama, H. Realization of high-efficiency deep-UV LEDs using transparent p-AlGaN contact layer. Phys. Status Solidi (c) 10, 1521–1524 (2013).

  118. 118.

    Yun, J. & Hirayama, H. Investigation of the light-extraction efficiency in 280nm AlGaN-based light-emitting diodes having a highly transparent p-AlGaN layer. J. Appl. Phys. 121, 013105 (2017).

  119. 119.

    Yun, J. et al. Analysis of efficiency droop in 280-nm AlGaN multiple-quantum-well light-emitting diodes based on carrier rate equation. Jpn. J. Appl. Phys. 8, 022104 (2015).

  120. 120.

    Kuo, Y. K. et al. Simulation and experimental study on barrier thickness of superlattice electron blocking layer in near-ultraviolet light-emitting diodes. IEEE J. Quantum Electron. 52, 3300306 (2016).

  121. 121.

    Zhang, Y. et al. Interband tunneling for hole injection in III-nitride ultraviolet emitters. Appl. Phys. Lett. 106, 141103 (2015).

  122. 122.

    Liang, H. et al. Vertically conducting deep-ultraviolet light-emitting diodes with interband tunneling junction grown on 6H-SiC substrate. Jpn. J. Appl. Phys. 55, 031202 (2016).

  123. 123.

    Kuwano, Y. et al. Lateral hydrogen diffusion at p-GaN layers in nitride-based light emitting diodes with tunnel junctions.Jpn. J. Appl. Phys. 52, 08JK12 (2013).

  124. 124.

    Pankove, J. I., Magee, C. W. & Wance, R. O. Hole-mediated chemisorption of atomic hydrogen in silicon. Appl. Phys. Lett. 47, 748–750 (1985).

  125. 125.

    Hirayama, H., Enomoto, Y., Kinoshita, A., Hirata, A. & Aoyagi, Y. Efficient 230–280 nm emission from high-Al-content AlGaN-based multiquantum wells. Appl. Phys. Lett. 80, 37–39 (2002).

  126. 126.

    Chang, J.-Y. et al. Effects of quantum barriers and electron-blocking layer in deep-ultraviolet light-emitting diodes. J. Appl. Phys. D 51, 075106 (2018).

  127. 127.

    Reich, C. et al. Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes. Appl. Phys. Lett. 107, 142101 (2015).

  128. 128.

    Lobo, N. et al. Enhancement of light extraction in UV LEDs using nanopixel contact design with Al reflector. Appl. Phys. Lett. 96, 081109 (2010).

  129. 129.

    Kashima, Y. et al. High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 11, 012101 (2018).

  130. 130.

    Nakashima, T. et al. Combination of indium-tin oxide and SiO2/AlN dielectric multilayer reflective electrodes for ultraviolet-light-emitting diodes. Jpn. J. Appl. Phys. 52, 08JG07 (2013).

  131. 131.

    Oh, S. et al. Self-assembled indium tin oxide nanoball embedded omnidirectional reflectors for high photon extraction efficiency in III-nitride ultraviolet emitters. Nanoscale 9, 7625–7630 (2017).

  132. 132.

    Inazu, T. et al. Improvement of light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes. Jpn. J. Appl. Phys. 50, 122101 (2011).

  133. 133.

    Khizar, M., Fan, Z. Y., Kim, K. H., Lin, J. Y. & Jiang, H. X. Nitride deep-ultraviolet light-emitting diodes with microlens array. Appl. Phys. Lett. 86, 173504 (2005).

  134. 134.

    Wierer, J. J., Allerman, A. A., Montaño, I. & Moseley, M. W. Influence of optical polarization on the improvement of light extraction efficiency from reflective scattering structures in AlGaN ultraviolet light-emitting diodes. Appl. Phys. Lett. 105, 061106 (2014).

  135. 135.

    Zhang, Y. et al. Effects of inclined sidewall structure with bottom metal air cavity on the light extraction efficiency for AlGaN-based deep ultraviolet light-emitting diodes. IEEE Photon. J. 9, 1600709 (2017).

  136. 136.

    Gao, N. et al. Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells. Sci. Rep. 2, 816 (2012).

  137. 137.

    Wang, J. et al. Localized surface plasmon-enhanced deep-UV light-emitting diodes with Al/Al2O3 asymmetrical nanoparticles. Plasmonics 12, 843–848 (2017).

  138. 138.

    Long, H. et al. Internal strain induced significant enhancement of deep ultraviolet light extraction efficiency for AlGaN multiple quantum wells grown by MOCVD. Opt. Express 26, 680–685 (2018).

  139. 139.

    Adivarahan, V. et al. Vertical injection thin film deep ultraviolet light emitting diodes with AlGaN multiple-quantum wells active region. Appl. Phys. Express 2, 092102 (2009).

  140. 140.

    Zhou, L. et al. Vertical injection thin-film multiple-quantum-well deep ultraviolet light emitting diodes. Appl. Phys. Lett. 89, 241113 (2006).

  141. 141.

    Aoshima, H. Laser lift-off of AlN/sapphire for UV light-emitting diodes. Phys. Status Solidi (c) 9, 753–756 (2012).

  142. 142.

    Lachab, M. et al. Enhancement of light extraction efficiency in sub-300 nm nitride thin-film flip-chip light-emitting diodes. Solid State Electron. 89, 156–160 (2013).

  143. 143.

    Ryu, H.-Y., Choi, I.-G., Choi, H.-S. & Shim, J.-I. Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes. Appl. Phys. Express 6, 062101 (2013).

  144. 144.

    Shchekin, O. B. et al. High performance thin-film flip-chip InGaN–GaN light-emitting diodes. Appl. Phys. Lett. 89, 071109 (2006).

  145. 145.

    Krames, M. R. et al. Status and future of high-power light-emitting diodes for solid-state lighting. J. Display Technol. 3, 160–175 (2007).

  146. 146.

    Chitnis, A. et al. High DC power 325 nm emission deep UV LEDs over sapphire. Electron. Lett. 38, 1709–1711 (2002).

  147. 147.

    Lobo Ploch, N. et al. Effective thermal management in ultraviolet light-emitting diodes with micro-LED arrays. IEEE Trans. Electron Dev. 60, 782–786 (2013).

  148. 148.

    Yasan, A. et al. 4.5 mW operation of AlGaN-based 267 nm deep-ultraviolet light-emitting diodes. Appl. Phys. Lett. 83, 4701–4703 (2003).

  149. 149.

    Liang, R. et al. Investigation on thermal characterization of eutectic flip-chip UV LEDs with different bonding voidage. IEEE Trans. Electron Dev. 64, 1174–1179 (2017).

  150. 150.

    Wang, C.-P., Ying, S.-P., Su, Y.-C. & Chang, T.-L. Thermal analysis of eutectic flip-chip light-emitting diodes fabricated using copper-coated ceramic substrate. IEEE Trans. Electron Dev. 62, 2524–2527 (2015).

  151. 151.

    Chitnis, A. et al. Submilliwatt operation of AlInGaN based multifinger-design 315 nm light emitting diode (LED) over sapphire substrate. Jpn. J. Appl. Phys. 41, L320–L322 (2002).

  152. 152.

    Adivarahan, V. et al. High-power deep ultraviolet light-emitting diodes based on a micro-pixel design. Appl. Phys. Lett. 85, 1838–1840 (2004).

  153. 153.

    Liu, D. et al. 226 nm AlGaN/AlN UV LEDs using p-type Si for hole injection and UV reflection. Appl. Phys. Lett. 113, 011111 (2018).

Download references


T.-Y.S and H.A. gratefully acknowledge financial support from the National Research Foundation of Korea funded by the Ministry of Science and ICT (Global Research Laboratory programme: NRF-2017K1A1A2013160). M.K. gratefully acknowledges support by the German Research Foundation (DFG) within the Collaborative Research Centre ‘Semiconductor Nanophotonics’ (CRC 787) as well as funding by the Federal Ministry of Education and Research (BMBF) of Germany within the ‘Zwanzig20’ initiative ‘Advanced UV for Life’.

Author information


  1. Institute of Solid State Physics, Technische Universität Berlin, Berlin, Germany

    • Michael Kneissl
  2. Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik, Berlin, Germany

    • Michael Kneissl
  3. Department of Materials Science and Engineering, Korea University, Seoul, South Korea

    • Tae-Yeon Seong
  4. Department of Electrical Engineering, Yale University, New Haven, CT, USA

    • Jung Han
  5. Center for Integrated Research of Future Electronics, and Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya, Japan

    • Hiroshi Amano


  1. Search for Michael Kneissl in:

  2. Search for Tae-Yeon Seong in:

  3. Search for Jung Han in:

  4. Search for Hiroshi Amano in:

Competing interests

The authors declare no competing interests.

Corresponding authors

Correspondence to Michael Kneissl or Tae-Yeon Seong or Jung Han.

About this article

Publication history




Issue Date