Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in solution-processed near-infrared light-emitting diodes

Abstract

Near-infrared light-emitting diodes based on solution-processed semiconductors, such as organics, halide perovskites and colloidal quantum dots, have emerged as a viable technological platform for biomedical applications, night vision, surveillance and optical communications. The recently gained increased understanding of the relationship between materials structure and photophysical properties has enabled the design of efficient emitters leading to devices with external quantum efficiencies exceeding 20%. Despite considerable strides made, challenges remain in achieving high radiance, reducing efficiency roll-off and extending operating lifetime. This Review summarizes recent advances on emissive materials synthetic methods and device key attributes that collectively contribute to improved performance of the fabricated light-emitting devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applicability and scalability of solution-processed NIR-LEDs.
Fig. 2: NIR emission from organic semiconductors.
Fig. 3: NIR light emission from perovskite LEDs.
Fig. 4: NIR emission from colloidal QDs.
Fig. 5: Figures of merit of NIR-LEDs.

Similar content being viewed by others

References

  1. Gu, Y. Y. et al. High-sensitivity imaging of time-domain near-infrared light transducer. Nat. Photon. 13, 525–531 (2019).

    Article  ADS  Google Scholar 

  2. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  ADS  Google Scholar 

  3. Ramaswami, R. Optical fiber communication: from transmission to networking. IEEE Commun. Mag. 40, 138–147 (2002).

    Article  Google Scholar 

  4. Wu, X. et al. Dye-sensitized core/active shell upconversion nanoparticles for optogenetics and bioimaging applications. ACS Nano 10, 1060–1066 (2016).

    Article  Google Scholar 

  5. Mokkapati, S. & Jagadish, C. III–V compound SC for optoelectronic devices. Mater. Today 12, 22–32 (2009).

    Article  Google Scholar 

  6. Schnitzer, I., Yablonovitch, E., Caneau, C. & Gmitter, T. J. Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131 (1993).

    Article  ADS  Google Scholar 

  7. Broell, M. et al. New developments on high efficiency infrared and InGaAlP light emitting diodes at OSRAM opto-semiconductors. Proc. SPIE 9003, 90030L (2014).

    Article  Google Scholar 

  8. Mao, M. et al. Broadband near-infrared (NIR) emission realized by the crystal-field engineering of Y3−xCaxAl5−xSixO12:Cr3+ (x = 0–2.0) garnet phosphors. J. Mater. Chem. C 8, 1981–1988 (2020).

    Article  Google Scholar 

  9. Zhong, Y. & Dai, H. A mini-review on rare-earth down-conversion nanoparticles for NIR-II imaging of biological systems. Nano Res. 13, 1281–1294 (2020).

    Article  Google Scholar 

  10. Liu, S., Wang, Z., Cai, H., Song, Z. & Liu, Q. Highly efficient near-infrared phosphor LaMgGa11O19:Cr3+. Inorg. Chem. Front. 7, 1467–1473 (2020).

    Article  Google Scholar 

  11. Zampetti, A., Minotto, A. & Cacialli, F. Near-infrared (NIR) organic light-emitting diodes (OLEDs): challenges and opportunities. Adv. Funct. Mater. 29, 1807623 (2019).

    Article  Google Scholar 

  12. Kumawat, N. K., Dey, A., Narasimhan, K. L. & Kabra, D. Near infrared to visible electroluminescent diodes based on organometallic halide perovskites: structural and optical investigation. ACS Photon. 2, 349–354 (2015).

    Article  Google Scholar 

  13. Sargent, E. H. Infrared quantum dots. Adv. Mater. 17, 515–522 (2005).

    Article  Google Scholar 

  14. Mikhnenko, O. V., Blom, P. W. M. & Nguyen, T.-Q. Exciton diffusion in organic semiconductors. Energy Environ. Sci. 8, 1867–1888 (2015).

    Article  Google Scholar 

  15. Voznyy, O., Sutherland, B. R., Ip, A. H., Zhitomirsky, D. & Sargent, E. H. Engineering charge transport by heterostructuring solution-processed semiconductors. Nat. Rev. Mater. 2, 17026 (2017).

    Article  ADS  Google Scholar 

  16. Liu, X.-K. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. 20, 10–21 (2021).

    Article  ADS  Google Scholar 

  17. Zhang, Y. et al. Near-infrared emitting materials via harvesting triplet excitons: molecular design, properties, and application in organic light emitting diodes. Adv. Opt. Mater. 6, 1800466 (2018).

    Article  Google Scholar 

  18. Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    Article  ADS  Google Scholar 

  19. Adachi, C. Third-generation organic electroluminescence materials. Jpn J. Appl. Phys. 53, 060101 (2014).

    Article  ADS  Google Scholar 

  20. Nagata, R., Nakanotani, H., Potscavage, W. J. Jr. & Adachi, C. Exploiting singlet fission in organic light-emitting diodes. Adv. Mater. 30, 1801484 (2018).

    Article  Google Scholar 

  21. Roncali, J. Molecular engineering of the band gap of π‐conjugated systems: facing technological applications. Macromol. Rapid Commun. 28, 1761–1775 (2007).

    Article  Google Scholar 

  22. Englman, R. & Jortner, J. The energy gap law for radiationless transitions in large molecules. Mol. Phys. 18, 145–164 (1970).

    Article  ADS  Google Scholar 

  23. Mayerhoffer, U., Gsanger, M., Stolte, M., Fimmel, B. & Wurthner, F. Synthesis and molecular properties of acceptor-substituted squaraine dyes. Chem. Eur. J. 19, 218–232 (2013).

    Article  Google Scholar 

  24. Minotto, A. et al. Efficient near-infrared electroluminescence at 840 nm with “metal-free” small-molecule:polymer blends. Adv. Mater. 30, 1706584 (2018).

    Article  Google Scholar 

  25. Minotto, A. et al. Towards efficient near-infrared fluorescent organic light-emitting diodes. Light Sci. Appl. 10, 18 (2021).

    Article  ADS  Google Scholar 

  26. Peng, Q., Obolda, A., Zhang, M. & Li, F. Organic light-emitting diodes using a neutral π radical as emitter: the emission from a doublet. Angew. Chem. Int. Ed. 54, 7091–7095 (2015).

    Article  Google Scholar 

  27. Guo, H. et al. High stability and luminescence efficiency in donor–acceptor neutral radicals not following the Aufbau principle. Nat. Mater. 18, 977–984 (2019).

    Article  ADS  Google Scholar 

  28. Ai, X. et al. Efficient radical-based light-emitting diodes with doublet emission. Nature 563, 536–540 (2018).

    Article  ADS  Google Scholar 

  29. Yamanaka, T., Nakanotani, H., Hara, S., Hirohata, T. & Adachi, C. Near-infrared organic light-emitting diodes for biosensing with high operating stability. Appl. Phys. Express 10, 074101 (2017).

    Article  ADS  Google Scholar 

  30. Wang, S. et al. Highly efficient near-infrared delayed fluorescence organic light emitting diodes using a phenanthrene-based charge-transfer compound. Angew. Chem. Int. Ed. 54, 13068–13072 (2015).

    Article  Google Scholar 

  31. Yuan, Y. et al. Over 10% EQE near-infrared electroluminescence based on a thermally activated delayed fluorescence emitter. Adv. Funct. Mater. 27, 1700986 (2017).

    Article  Google Scholar 

  32. Kim, D. H. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photon. 12, 98–104 (2018).

    Article  ADS  Google Scholar 

  33. Ye, H. et al. Near-infrared electroluminescence and low threshold amplified spontaneous emission above 800 nm from a thermally activated delayed fluorescent emitter. Chem. Mater. 30, 6702–6710 (2018).

    Article  Google Scholar 

  34. Hu, Y. et al. Efficient near‐infrared emission by adjusting the guest–host interactions in thermally activated delayed fluorescence organic light‐emitting diodes. Adv. Funct. Mater. 28, 1802597 (2018).

    Article  Google Scholar 

  35. Xue, J. et al. Highly efficient thermally activated delayed fluorescence via J-aggregates with strong intermolecular charge transfer. Adv. Mater. 31, 1808242 (2019).

    Article  Google Scholar 

  36. Liang, Q., Xu, J., Xue, J. & Qiao, J. Near-infrared-II thermally activated delayed fluorescence organic light-emitting diodes. Chem. Commun. 56, 8988–8991 (2020).

    Article  Google Scholar 

  37. Congrave, D. G. et al. A simple molecular design strategy for delayed fluorescence toward 1,000 nm. J. Am. Chem. Soc. 141, 18390–18394 (2019).

    Article  Google Scholar 

  38. Shahalizad, A. et al. Efficient solution-processed hyperfluorescent OLEDs with spectrally narrow emission at 840 nm. Adv. Funct. Mater. 31, 2007119 (2021).

    Article  Google Scholar 

  39. Brodeur, J. et al. Highly efficient and spectrally narrow near-infrared fluorescent OLEDs using a TADF-sensitized cyanine dye. Adv. Optical Mater. 7, 1901144 (2019).

    Article  Google Scholar 

  40. Wei, Y. C. et al. Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nat. Photon. 14, 570–577 (2020).

    Article  ADS  Google Scholar 

  41. Xue, J. et al. Homoleptic facial Ir(III) complexes via facile synthesis for high-efficiency and low-roll-off near-infrared organic light-emitting diodes over 750 nm. Chem. Mater. 29, 4775–4782 (2017).

    Article  Google Scholar 

  42. Lee, T.-C. et al. Rational design of charge‐neutral, near‐infrared‐emitting osmium(II) complexes and OLED fabrication. Adv. Funct. Mater. 19, 2639–2647 (2009).

    Article  Google Scholar 

  43. Chen, Z. et al. A simple and efficient approach toward deep-red to near-infrared-emitting iridium(III) complexes for organic light-emitting diodes with external quantum efficiencies of over 10%. Chem. Sci. 11, 2342–2349 (2020).

    Article  Google Scholar 

  44. Yuan, Y. et al. Boosting efficiency of near‐infrared organic light‐emitting diodes with Os(II)‐based pyrazinyl azolate emitters. Adv. Funct. Mater. 30, 1906738 (2020).

    Article  Google Scholar 

  45. Cocchi, M., Kalinowski, J., Virgili, D. & Williams, J. A. G. Excimer-based red/near-infrared organic light-emitting diodes with very high quantum efficiency. Appl. Phys. Lett. 92, 113302 (2008).

    Article  ADS  Google Scholar 

  46. Tuong, Ly,K. et al. Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nat. Photon. 11, 63–68 (2017).

    Article  ADS  Google Scholar 

  47. Chen, W.-C. et al. Modulation of solid‐state aggregation of square‐planar Pt(II) based emitters: enabling highly efficient deep‐red/near infrared electroluminescence. Adv. Funct. Mater. 30, 2002494 (2020).

    Article  Google Scholar 

  48. Wang, S. F. et al. Highly efficient near-infrared electroluminescence up to 800 nm using platinum(II) phosphors. Adv. Funct. Mater. 30, 2002173 (2020).

    Article  Google Scholar 

  49. Borek, C. et al. Highly efficient, near-infrared electrophosphorescence from a Pt–metalloporphyrin complex. Angew. Chem. Int. Ed. 46, 1109–1112 (2007).

    Article  Google Scholar 

  50. Jinnai, K., Kabe, R. & Adachi, C. A near-infrared organic light-emitting diode based on an Yb(III) complex synthesized by vacuum co-deposition. Chem. Commun. 53, 5457–5460 (2017).

    Article  Google Scholar 

  51. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  ADS  Google Scholar 

  52. Qiu, W. et al. Mixed lead–tin halide perovskites for efficient and wavelength-tunable near-infrared light-emitting diodes. Adv. Mater. 31, 1806105 (2019).

    Article  Google Scholar 

  53. Lai, M. L. et al. Tunable near-infrared luminescence in tin halide perovskite devices. J. Phys. Chem. Lett. 7, 2653–2658 (2016).

    Article  Google Scholar 

  54. Smith, M. D., Connor, B. A. & Karunadasa, H. I. Tuning the luminescence of layered halide perovskites. Chem. Rev. 119, 3104–3139 (2019).

    Article  Google Scholar 

  55. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  ADS  Google Scholar 

  56. Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    Article  ADS  Google Scholar 

  57. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  58. Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    Article  ADS  Google Scholar 

  59. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  ADS  Google Scholar 

  60. Wang, H. et al. Perovskite–molecule composite thin films for efficient and stable light-emitting diodes. Nat. Commun. 11, 891 (2020).

    Article  ADS  Google Scholar 

  61. Jia, Y.-H. et al. Role of excess FAI in formation of high-efficiency FAPbI3-based light-emitting diodes. Adv. Funct. Mater. 30, 1906875 (2020).

    Article  Google Scholar 

  62. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  ADS  Google Scholar 

  63. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  ADS  Google Scholar 

  64. Hong, W.-L. et al. Efficient low-temperature solution-processed lead-free perovskite infrared light-emitting diodes. Adv. Mater. 28, 8029–8036 (2016).

    Article  Google Scholar 

  65. Yang, R. et al. Oriented quasi-2D perovskites for high performance optoelectronic devices. Adv. Mater. 30, 1804771 (2018).

    Article  Google Scholar 

  66. Tsai, H. et al. Stable light-emitting diodes using phase-pure Ruddlesden–Popper layered perovskites. Adv. Mater. 30, 1704217 (2018).

    Article  Google Scholar 

  67. Giuri, A. et al. Ultra-bright near-infrared perovskite light-emitting diodes with reduced efficiency roll-off. Sci. Rep. 8, 15496 (2018).

    Article  ADS  Google Scholar 

  68. Kovalenko, M. V., Protesescu, L. & Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358, 745–750 (2017).

    Article  ADS  Google Scholar 

  69. Protesescu, L. et al. Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano 11, 3119–3134 (2017).

    Article  Google Scholar 

  70. Lignos, I. et al. Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano 12, 5504–5517 (2018).

    Article  Google Scholar 

  71. Pan, G. et al. Doping lanthanide into perovskite nanocrystals: highly improved and expanded optical properties. Nano Lett. 17, 8005–8011 (2017).

    Article  ADS  Google Scholar 

  72. Shen, X. et al. Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices. Nano Lett. 19, 1552–1559 (2019).

    Article  ADS  Google Scholar 

  73. Milstein, T. J., Kroupa, D. M. & Gamelin, D. R. Picosecond quantum cutting generates photoluminescence quantum yields over 100% in ytterbium-doped CsPbCl3 nanocrystals. Nano Lett. 18, 3792–3799 (2018).

    Article  ADS  Google Scholar 

  74. Ishii, A. & Miyasaka, T. Sensitized Yb3+ luminescence in CsPbCl3 film for highly efficient near-infrared light-emitting diodes. Adv. Sci. 7, 1903142 (2020).

    Article  Google Scholar 

  75. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulovic, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2013).

    Article  ADS  Google Scholar 

  76. Ma, Y., Zhang, Y. & Yu, W. W. Near infrared emitting quantum dots: synthesis, luminescence properties and applications. J. Mater. Chem. C 7, 13662–13679 (2019).

    Article  ADS  Google Scholar 

  77. Rogach, A. L. et al. Colloidally prepared HgTe nanocrystals with strong room‐temperature infrared luminescence. Adv. Mater. 11, 552–555 (1999).

    Article  Google Scholar 

  78. Harrison, M. T. et al. Wet chemical synthesis of highly luminescent HgTe/CdS core/shell nanocrystals. Adv. Mater. 12, 123–125 (2000).

    Article  Google Scholar 

  79. Harris, D. K. et al. Synthesis of cadmium arsenide quantum dots luminescent in the infrared. J. Am. Chem. Soc. 133, 4676–4679 (2011).

    Article  Google Scholar 

  80. Cheng, K.-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. Hybrid silicon nanocrystal–organic light-emitting devices for infrared electroluminescence. Nano Lett. 10, 1154–1157 (2010).

    Article  ADS  Google Scholar 

  81. Tang, R. et al. Tunable ultrasmall visible-to-extended near-infrared emitting silver sulfide quantum dots for integrin-targeted cancer imaging. ACS Nano 9, 220–230 (2015).

    Article  Google Scholar 

  82. Hinds, S. et al. NIR-emitting colloidal quantum dots having 26% luminescence quantum yield in buffer solution. J. Am. Chem. Soc. 129, 7218–7219 (2007).

    Article  Google Scholar 

  83. Tessler, N., Medvedev, V., Kazes, M., Kan, S. & Banin, U. Efficient near-infrared polymer nanocrystal light-emitting diodes. Science 295, 1506–1508 (2002).

    Article  ADS  Google Scholar 

  84. Steckel, J. S., Coe-Sullivan, S., Bulovic, V. & Bawendi, M. G. 1.3 μm to 1.55 μm tunable electroluminescence from PbSe quantum dots embedded within an organic device. Adv. Mater. 15, 1862–1866 (2003).

    Article  Google Scholar 

  85. Konstantatos, G., Huang, C. J., Levina, L., Lu, Z. H. & Sargent, E. H. Efficient infrared electroluminescent devices using solution-processed colloidal quantum dots. Adv. Funct. Mater. 15, 1865–1869 (2005).

    Article  Google Scholar 

  86. Choudhury, K. R., Song, D. W. & Franky, S. Efficient solution-processed hybrid polymer–nanocrystal near infrared light-emitting devices. Org. Electron. 11, 23–28 (2010).

    Article  Google Scholar 

  87. Bourdakos, K. N., Dissanayake, D. M. N. M., Lutz, T., Silva, S. R. P. & Curry, R. J. Highly efficient near-infrared hybrid organic–inorganic nanocrystal electroluminescence device. Appl. Phys. Lett. 92, 153311 (2008).

    Article  ADS  Google Scholar 

  88. Sun, L. et al. Bright infrared quantum-dot light-emitting diodes through inter-dot spacing control. Nat. Nanotechnol. 7, 369–373 (2012).

    Article  ADS  Google Scholar 

  89. Cheng, K.-Y., Anthony, R., Kortshagen, U. R. & Holmes, R. J. High efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11, 1952–1956 (2011).

    Article  ADS  Google Scholar 

  90. Franke, D. et al. Continuous injection synthesis of indium arsenide quantum dots emissive in the short-wavelength infrared. Nat. Commun 7, 12749 (2016).

    Article  ADS  Google Scholar 

  91. Wijaya, H. et al. Efficient near-infrared light-emitting diodes based on In(Zn)As–In(Zn)P–GaP–ZnS quantum dots. Adv. Funct. Mater. 30, 1906483 (2020).

    Article  Google Scholar 

  92. Chen, S. et al. InAs/GaAs quantum-dot superluminescent light-emitting diode monolithically grown on a Si substrate. ACS Photon. 1, 638–642 (2014).

    Article  Google Scholar 

  93. Hu, W. et al. Near-infrared quantum dot light emitting diodes employing electron transport nanocrystals in a layered architecture. Nanotechnology 23, 375202 (2012).

    Article  ADS  Google Scholar 

  94. Ma, X., Xu, F., Benavides, J. & Cloutier, S. G. High performance hybrid near-infrared LEDs using benzenedithiol cross-linked PbS colloidal nanocrystals. Org. Electron. 13, 525–531 (2012).

    Article  Google Scholar 

  95. Zhitomirsky, D., Voznyy, O., Hoogland, S. & Sargent, E. H. Measuring charge carrier diffusion in coupled colloidal quantum dot solids. ACS Nano 7, 5282–5290 (2013).

    Article  Google Scholar 

  96. Sanchez, R. S. et al. All solution processed low turn-on voltage near infrared LEDs based on core–shell PbS–CdS quantum dots with inverted device structure. Nanoscale 6, 8551–8555 (2014).

    Article  ADS  Google Scholar 

  97. Supran, G. J. et al. High-performance shortwave-infrared light-emitting devices using core–shell (PbS–CdS) colloidal quantum dots. Adv. Mater. 27, 1437–1442 (2015).

    Article  Google Scholar 

  98. Yang, X. et al. Iodide capped PbS/CdS core–shell quantum dots for efficient long-wavelength near-infrared light-emitting diodes. Sci. Rep. 7, 14741 (2017).

    Article  ADS  Google Scholar 

  99. Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photon. 10, 253–257 (2016).

    Article  ADS  Google Scholar 

  100. Ning, Z. et al. Quantum-dot-in-perovskite solids. Nature 523, 324–328 (2015).

    Article  ADS  Google Scholar 

  101. Gao, L. et al. Efficient near-infrared light-emitting diodes based on quantum dots in layered perovskite. Nat. Photon. 14, 227–233 (2020).

    Article  ADS  Google Scholar 

  102. Vasilopoulou, M. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photon. 14, 50–56 (2020).

    Article  ADS  Google Scholar 

  103. Pradhan, S. et al. High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level. Nat. Nanotechnol. 14, 72–79 (2019).

    Article  ADS  Google Scholar 

  104. Pradhan, S., Dalmases, M., Baspinar, A.-B. & Konstantatos, G. Highly efficient, bright, and stable colloidal quantum dot short-wave infrared light-emitting diodes. Adv. Funct. Mater. 30, 2004445 (2020).

    Article  Google Scholar 

  105. Li, L. et al. Self‐filtered narrowband perovskite photodetectors with ultrafast and tuned spectral response. Adv. Opt. Mater. 5, 1700672 (2017).

    Article  Google Scholar 

  106. Dortaj, S. et al. High-speed and high-precision PbSe/PbI2 solution process mid-infrared camera. Sci Rep. 11, 1533 (2021).

    Article  ADS  Google Scholar 

  107. Ullbrich, S. et al. Fast organic near-infrared photodetectors based on charge-transfer absorption. J. Phys. Chem. Lett. 8, 5621–5625 (2017).

    Article  Google Scholar 

  108. Shen, L. et al. Integration of perovskite and polymer photoactive layers to produce ultrafast response, ultraviolet-to-near-infrared, sensitive photodetectors. Mater. Horiz. 4, 242–248 (2017).

    Article  Google Scholar 

  109. Gao, J., Nguyen, S., Bronstein, N. D. & Alivisatos, A. P. Solution-processed, high speed and high quantum efficiency quantum dot infrared photodetectors. ACS Photon. 3, 1217–1222 (2016).

    Article  Google Scholar 

  110. Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    Article  Google Scholar 

  111. Zhang, Q. et al. Light out-coupling management in perovskite LEDs—what can we learn from the past? Adv. Funct. Mater. 30, 2002570 (2020).

    Article  Google Scholar 

  112. Zhang, X., Hägglund, C. & Johansson, E. M. J. Electro-optics of colloidal quantum dot solids for thin-film solar cells. Adv. Funct. Mater. 26, 1253–1260 (2016).

    Article  Google Scholar 

  113. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  ADS  Google Scholar 

  114. Miao, Y. et al. Microcavity top-emission perovskite light-emitting diodes. Light Sci. Appl. 9, 89 (2020).

    Article  ADS  Google Scholar 

  115. Shen, Y. et al. High‐efficiency perovskite light‐emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).

    Article  Google Scholar 

  116. Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light‐emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).

    Article  Google Scholar 

  117. Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    Article  ADS  Google Scholar 

  118. Murawski, C., Leo, K. & Gather, M. C. Efficiency roll-off in organic light-emitting diodes. Adv. Mater. 25, 6801–6827 (2013).

    Article  Google Scholar 

  119. Sassi, M. et al. Near-infrared roll-off-free electroluminescence from highly stable diketopyrrolopyrrole light emitting diodes. Sci. Rep. 6, 34096 (2016).

    Article  ADS  Google Scholar 

  120. Bencheikh, F., Sandanayaka, A. S. D., Fukunaga, T., Matsushima, T. & Adachi, C. Origin of external quantum efficiency roll-off in 4,4′-bis[(N-carbazole)styryl]biphenyl (BSBCz)-based inverted organic light emitting diode under high pulsed electrical excitation. J. Appl. Phys. 126, 185501 (2019).

    Article  ADS  Google Scholar 

  121. Swayamprabha, S. S. et al. Approaches for long lifetime organic light emitting diodes. Adv. Sci. 8, 2002254 (2020).

    Article  Google Scholar 

  122. Matsushima, T. et al. High performance from extraordinarily thick organic light-emitting diodes. Nature 572, 502–506 (2019).

    Article  ADS  Google Scholar 

  123. Titov, A. et al. 6-3: Quantum dot LEDs: problems & prospects. SID Symp. Dig. Tech. Pap. 48, 58–60 (2017).

    Article  Google Scholar 

  124. Gao, Y. et al. Disorder strongly enhances Auger recombination in conductive quantum-dot solids. Nat. Commun. 4, 2329 (2013).

    Article  ADS  Google Scholar 

  125. Kim, K. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Article  ADS  Google Scholar 

  126. Fakharuddin, A. et al. Reduced efficiency roll-off and improved stability of mixed 2D/3D perovskite light emitting diodes by balancing charge injection. Adv. Funct. Mater. 29, 1904101 (2019).

    Article  Google Scholar 

  127. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2020).

    Article  ADS  Google Scholar 

  128. Zhao, L. et al. Thermal management enables bright and stable perovskite light‐emitting diodes. Adv. Mater. 32, 2000752 (2020).

    Article  Google Scholar 

  129. Zou, C., Liu, Y., Ginger, D. S. & Lin, L. Y. Suppressing efficiency roll-off at high current densities for ultra-bright green perovskite light-emitting diodes. ACS Nano 14, 6076–6086 (2020).

    Article  Google Scholar 

  130. Yoshida, K., Nakanotani, H. & Adachi, C. Effect of Joule heating on transient current and electroluminescence in p–i–n organic light-emitting diodes under pulsed voltage operation. Org. Electron. 31, 287–294 (2016).

    Article  Google Scholar 

  131. Kim, H. et al. Proton-transfer-induced 3D/2D hybrid perovskites suppress ion migration and reduce luminance overshoot. Nat. Commun. 11, 3378 (2020).

    Article  ADS  Google Scholar 

  132. Prakasam, V., Tordera, D., Bolink, H. J. & Gelinck, G. Degradation mechanisms in organic lead halide perovskite light‐emitting diodes. Adv. Opt. Mater. 7, 1900902 (2020).

    Article  Google Scholar 

  133. Guo, Y. et al. Phenylalkylammonium passivation enables perovskite light emitting diodes with record high-radiance operational lifetime: the chain length matters. Nat. Commun. 12, 644 (2021).

    Article  Google Scholar 

  134. Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Article  ADS  Google Scholar 

  135. Moroz, P. et al. Infrared emitting PbS nanocrystal solids through matrix encapsulation. Chem. Mater. 26, 4256–4264 (2014).

    Article  Google Scholar 

  136. Xie, C., Zhao, X., Ong, E. W. Y. & Tan, Z.-K. Transparent near-infrared perovskite light-emitting diodes. Nat. Commun. 11, 4213 (2020).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

M.V. acknowledges funding by the project ‘Development of Materials and Devices for Industrial, Health, Environmental and Cultural Applications’ (MIS 5002567), which is implemented under the ‘Action for the Strategic Development on the Research and Technological Sector’, funded by the Operational Programme ‘Competitiveness, Entrepreneurship and Innovation’ (NSRF 2014-2020) and co-financed by Greece and the European Union (European Regional Development Fund). H.J.B. acknowledges funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 834431) and the Spanish Ministry of Science, Innovation and Universities MAT2017-88821-R and CEX2019-000919-M. F.P.G.d.A. and E.H.S. acknowledge support from the Canada Research Chair. F.P.G.d.A. was also supported by the Ministry of Economy and Competitiveness of Spain through the “Severo Ochoa” programme for Centres of Excellence in R&D (SE5-0522), Fundació Privada Cellex, Fundació Privada Mir-Puig, and the Generalitat de Catalunya through the CERCA programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Vasilopoulou, Henk J. Bolink or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Yun Chi, Zhi-Kuang Tan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasilopoulou, M., Fakharuddin, A., García de Arquer, F.P. et al. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photon. 15, 656–669 (2021). https://doi.org/10.1038/s41566-021-00855-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00855-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing