Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sub-hertz fundamental linewidth photonic integrated Brillouin laser

Abstract

Spectrally pure lasers, the heart of precision high-end scientific and commercial applications, are poised to make the leap from the laboratory to integrated circuits. Translating this performance to integrated photonics will dramatically reduce cost and footprint for applications such as ultrahigh capacity fibre and data centre networks, atomic clocks and sensing. Despite the numerous applications, integrated lasers currently suffer from large linewidth. Brillouin lasers, with their unique properties, offer an intriguing solution, yet bringing their performance to integrated platforms has remained elusive. Here, we demonstrate a sub-hertz (~0.7 Hz) fundamental linewidth Brillouin laser in an integrated Si3N4 waveguide platform that translates advantages of non-integrated designs to the chip scale. This silicon-foundry-compatible design supports low loss from 405 to 2,350 nm and can be integrated with other components. Single- and multiple-frequency output operation provides a versatile low phase-noise solution. We highlight this by demonstrating an optical gyroscope and a low-phase-noise photonic oscillator.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Si3N4 waveguide Brillouin laser and application system-on-chip examples.
Fig. 2: Brillouin laser optical guiding, phonon generation and resonant gain.
Fig. 3: Laser resonator cold-cavity characteristics and Brillouin gain measurement and modelling.
Fig. 4: Experimental measurement setup and laser threshold, slope efficiency and cascaded-order power dynamics measurement.
Fig. 5: Laser linewidth measurement and linewidth narrowing.
Fig. 6: Integrated laser optical gyroscope and photonic microwave synthesizer demonstrations.

Data availability

The data that support the plots within this paper and other finding of this study are available from the corresponding author on reasonable request.

References

  1. Kikuchi, K. Fundamentals of coherent optical fiber communications. J. Lightwave Technol. 34, 157–179 (2016).

    Article  ADS  Google Scholar 

  2. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  3. Kitching, J., Knappe, S. & Donley, E. A. Atomic sensors—a review. IEEE. Sens. J. 11, 1749–1758 (2011).

    Article  ADS  Google Scholar 

  4. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    Article  ADS  Google Scholar 

  5. Bartels, A., Oates, C. W., Hollberg, L. & Diddams, S. A. Stabilization of femtosecond laser frequency combs with subhertz residual linewidths. Opt. Lett. 29, 1081–1083 (2004).

    Article  ADS  Google Scholar 

  6. Young, B. C., Cruz, F. C., Itano, W. M. & Bergquist, J. C. Visible lasers with subhertz linewidths. Phys. Rev. Lett. 82, 3799–3802 (1999).

    Article  ADS  Google Scholar 

  7. Ludlow, A. D. et al. Sr lattice clock at 1 × 10−16 fractional uncertainty by remote optical evaluation with a Ca clock. Science 319, 1805–1808 (2008).

    Article  ADS  Google Scholar 

  8. Barwood, G. P. et al. Agreement between two 88Sr+ optical clocks to 4 parts in 1017. Phys. Rev. A. 89, 050501(R) (2014).

    Article  ADS  Google Scholar 

  9. Carlson, D. R. et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 42, 2314–2317 (2017).

    Article  ADS  Google Scholar 

  10. Diddams, S. A., Ye, J. & Hollberg, L. in Femtosecond Optical Frequency Comb Technology: Principle, Operation and Applications (eds Cundiff, S. T. & Ye, J.) 225–262 (Springer, Boston, 2005).

  11. Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip Brillouin oscillator. Nat. Commun. 4, 2097 (2013).

    Article  ADS  Google Scholar 

  12. Li, J., Suh, M.-G. & Vahala, K. Microresonator Brillouin gyroscope. Optica 4, 346–348 (2017).

    Article  Google Scholar 

  13. Corbett, J. C. et al. Spanner: Google’s globally-distributed database. In Proc. 10th USENIX Conference on Operating Systems Design and Implementation 251–264 (USENIX Association, 2012).

  14. Hu, H. et al. Single-source chip-based frequency comb enabling extreme parallel data transmission. Nat. Photon. 12, 469–473 (2018).

    Article  ADS  Google Scholar 

  15. Perin, J. K., Shastri, A. & Kahn, J. M. Design of low-power DSP-free coherent receivers for data center links. J. Lightwave Technol. 35, 4650–4662 (2017).

    Article  ADS  Google Scholar 

  16. Olsson, S. L. et al. Probabilistically shaped PDM 4096-QAM transmission over up to 200 km of fiber using standard intradyne detection. Opt. Express 26, 4522–4530 (2018).

    Article  ADS  Google Scholar 

  17. Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 (Cisco, 2017); https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html

  18. Andrae A. Total Consumer Power Consumption Forecast (researchgate.net, 2017); https://www.researchgate.net/publication/320225452_Total_Consumer_Power_Consumption_Forecast

  19. Hill, K. O., Kawasaki, B. S. & Johnson, D. C. cw Brillouin laser. Appl. Phys. Lett. 28, 608–609 (1976).

    Article  ADS  Google Scholar 

  20. Jihong, G. et al. Highly stable low-noise Brillouin fiber laser with ultranarrow spectral linewidth. IEEE Photon. Technol. Lett. 18, 1813–1815 (2006).

    Article  ADS  Google Scholar 

  21. Debut, A., Randoux, S. & Zemmouri, J. Linewidth narrowing in Brillouin lasers: theoretical analysis. Phys. Rev. A. 62, 023803 (2000).

    Article  ADS  Google Scholar 

  22. Woodward, R. I., Kelleher, E. J., Popov, S. V. & Taylor, J. R. Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers. Opt. Lett. 39, 2330–2333 (2014).

    Article  ADS  Google Scholar 

  23. Smith, S. P., Zarinetchi, F. & Ezekiel, S. Narrow-linewidth stimulated Brillouin fiber laser and applications. Opt. Lett. 16, 393–395 (1991).

    Article  ADS  Google Scholar 

  24. Loh, W. et al. A microrod-resonator Brillouin laser with 240 Hz absolute linewidth. New J. Phys. 18, 045001 (2016).

    Article  ADS  Google Scholar 

  25. Geng, J. & Jiang, S. Pump-to-Stokes transfer of relative intensity noise in Brillouin fiber ring lasers. Opt. Lett. 32, 11–13 (2007).

    Article  ADS  Google Scholar 

  26. Behunin, R. O., Otterstrom, N. T., Rakich, P. T., Gundavarapu, S. & Blumenthal, D. J. Fundamental noise dynamics in cascaded-order Brillouin lasers. Phys. Rev. A. 98, 023832 (2018).

    Article  ADS  Google Scholar 

  27. Mooradian, A. Laser linewidth. Phys. Today 38, 42–48 (1985).

    Article  ADS  Google Scholar 

  28. Santis, C., Vilenchik, Y., Yariv, A., Satyan, N. & Rakuljic, G. Sub-kHz quantum linewidth semiconductor laser on silicon chip. In CLEO: 2015 Postdeadline Paper Digest JTh5A.7 (OSA, 2015).

  29. Fan, Y. et al. 290 Hz intrinsic linewidth from an integrated optical chip-based widely tunable InP-Si3N4 hybrid laser. In CLEO: 2017 Paper Digest JTh5C.9 (OSA, 2017).

  30. Grudinin, I. S., Matsko, A. B. & Maleki, L. Brillouin lasing with a CaF2 whispering gallery mode resonator. Phys. Rev. Lett. 102, 043902 (2009).

    Article  ADS  Google Scholar 

  31. Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).

    Article  ADS  Google Scholar 

  32. Otterstrom, N. T., Behunin, R. O., Kittlaus, E. A., Wang, Z. & Rakich, P. T. A silicon Brillouin laser. Science 360, 1113–1116 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. Morrison, B. et al. Compact Brillouin devices through hybrid integration on silicon. Optica 4, 847–847 (2017).

    Article  Google Scholar 

  34. Kabakova, I. V. et al. Narrow linewidth Brillouin laser based on chalcogenide photonic chip. Opt. Lett. 38, 3208–3211 (2013).

    Article  ADS  Google Scholar 

  35. Bauters, J. F. et al. Planar waveguides with less than 0.1 dB/m propagation loss fabricated with wafer bonding. Opt. Express 19, 24090–24101 (2011).

    Article  ADS  Google Scholar 

  36. Loh, W. et al. Dual-microcavity narrow-linewidth Brillouin laser. Optica 2, 225–232 (2015).

    Article  Google Scholar 

  37. Blumenthal, D. J. et al. Silicon nitride in silicon photonics. Proc. IEEE 106, 2209–2231 (2018).

    Article  Google Scholar 

  38. Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2013).

    Article  ADS  Google Scholar 

  39. Roeloffzen, C. G. H. et al. Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 4400321 (2018).

    Article  Google Scholar 

  40. Spencer D. T. et al. Integrated single and multi-layer Si3N4 platform for ultralow loss propagation and small bending radii. In Optical Fiber Communication Conference (pp. Th1A-2) (OSA, 2014).

  41. Huffman, T. A. et al. Integrated resonators in an ultralow loss Si3N4/SiO2 platform for multifunction applications. IEEE J. Sel. Top. Quantum Electron. 24, 5900209 (2018).

    Article  Google Scholar 

  42. Li, J., Lee, H., Yang, K. Y. & Vahala, K. J. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).

    Article  ADS  Google Scholar 

  43. Armani, D. K., Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Ultra-high-Q toroid microcavity on a chip. Nature 421, 925–928 (2003).

    Article  ADS  Google Scholar 

  44. Drever, R. W. P. et al. Laser phase and frequency stabilization using an optical resonator. Appl. Phys. B 31, 97–105 (1983).

    Article  ADS  Google Scholar 

  45. Fortier, T. M. et al. Generation of ultrastable microwaves via optical frequency division. Nat. Photon. 5, 425–429 (2011).

    Article  ADS  Google Scholar 

  46. Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).

    Article  Google Scholar 

  47. Merklein, M. et al. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett. 41, 4633–4636 (2016).

    Article  ADS  Google Scholar 

  48. Spencer, D. T. et al. An optical-frequency synthesizer using integrated photonics. Nature 557, 81–85 (2018).

    Article  ADS  Google Scholar 

  49. Tran, M. et al. Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III–V photonics. Appl. Sci. 8, 1139 (2018).

    Article  Google Scholar 

  50. Liao, P. et al. Dependence of a microresonator Kerr frequency comb on the pump linewidth. Opt. Lett. 42, 779–782 (2017).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material is based on work supported by the Defense Advanced Research Projects Agency (DARPA) and Space and Naval Warfare Systems Center Pacific (SSC Pacific) under Contract No. N66001-16-C-4017. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing official policies of DARPA or the US Government. We thank R. Lutwak and J. Adeleman for useful discussions. We also thank B. Stamenic for help in processing samples in the UCSB nanofabrication facility, W. Renninger for help with the measurement techniques for Brillouin gain profiles and J. Sexton, J. Hunter and D. Larson at Honeywell for the cladding deposition, pre-cladding preparation and anneal process and Z. Su for help with the figures.

Author information

Authors and Affiliations

Authors

Contributions

S.G., G.M.B., R.B., P.T.R. and D.J.B. prepared the manuscript. S.G., G.M.B., M.P. and J.W. contributed equally to performing the system, lasing and noise measurements. T.H., D.B. and J.N. contributed to the Si3N4 integrated laser fabrication. M.P., S.G., D.B., P.T.R., R.B., J.N., K.D.N., M.S. and D.J.B. contributed to the laser design. R.B., P.T.R., M.P., T.Q., S.G. and K.D.N. contributed to the simulation and modelling. G.M.B., C.P., N.C. and S.G. built the radiofrequency calibrated Mach–Zehnder interferometer and ring-down systems and measured the laser resonator properties. S.G., G.M.B., C.P., M.P. and J.W. performed Brillouin gain measurements. All authors contributed to analysing simulated and experimental results. D.J.B., K.D.N., P.T.R. and M.S. supervised and led the scientific collaboration.

Corresponding author

Correspondence to Daniel J. Blumenthal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes and figures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gundavarapu, S., Brodnik, G.M., Puckett, M. et al. Sub-hertz fundamental linewidth photonic integrated Brillouin laser. Nature Photon 13, 60–67 (2019). https://doi.org/10.1038/s41566-018-0313-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0313-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing