Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin control in reduced-dimensional chiral perovskites

Abstract

Hybrid organic–inorganic perovskites exhibit strong spin–orbit coupling1, spin-dependent optical selection rules2,3 and large Rashba splitting4,5,6,7,8. These characteristics make them promising candidates for spintronic devices9 with photonic interfaces. Here we report that spin polarization in perovskites can be controlled through chemical design as well as by a magnetic field. We obtain both spin-polarized photon absorption and spin-polarized photoluminescence in reduced-dimensional chiral perovskites through combined strategies of chirality transfer and energy funnelling. A 3% spin-polarized photoluminescence is observed even in the absence of an applied external magnetic field owing to the different emission rates of σ+ and σ polarized photoluminescence. Three-dimensional perovskites achieve a comparable degree of photoluminescence polarization only under an external magnetic field of 5 T. Our findings pave the way for chiral perovskites as powerful spintronic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chirality transfer and energy funnelling for efficient photoluminescence.
Fig. 2: Structural and photophysical studies of RDCPs.
Fig. 3: Polarized photoluminescence studies of RDCPs at 2 K.
Fig. 4: Mechanism of SPPL in RDCPs and the influence of magnetic field on the energy levels and degree of polarization of R-RDCP.

Similar content being viewed by others

References

  1. Zhang, C. et al. Magnetic field effects in hybrid perovskite devices. Nat. Phys. 11, 427–434 (2015).

    Article  Google Scholar 

  2. Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

    Article  Google Scholar 

  3. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    Article  ADS  Google Scholar 

  4. Niesner, D. et al. Giant Rashba splitting in CH3NH3PbBr3 organic–inorganic perovskite. Phys. Rev. Lett. 117, 126401 (2016).

    Article  ADS  Google Scholar 

  5. Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  ADS  Google Scholar 

  6. Kim, M., Im, J., Freeman, A. J., Ihm, J. & Jin, H. Switchable S = 1/2 and J = 1/2 Rashba bands in ferroelectric halide perovskites. Proc. Natl Acad. Sci. USA 111, 6900–6904 (2014).

    Article  ADS  Google Scholar 

  7. Isarov, M. et al. Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Lett. 17, 5020–5026 (2017).

    Article  ADS  Google Scholar 

  8. Mosconi, E., Etienne, T. & De Angelis, F. Rashba band splitting in organohalide lead perovskites: bulk and surface effects. J. Phys. Chem. Lett. 8, 2247–2252 (2017).

    Article  Google Scholar 

  9. Pulizzi, F. Spintronics. Nat. Mater. 11, 367 (2012).

    Article  ADS  Google Scholar 

  10. Chappert, C., Fert, A. & Van Dau, F. N. The emergence of spin electronics in data storage. Nat. Mater. 6, 813–823 (2007).

    Article  ADS  Google Scholar 

  11. Ohno, Y. et al. Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999).

    Article  ADS  Google Scholar 

  12. Ghali, M., Ohtani, K., Ohno, Y. & Ohno, H. Generation and control of polarization-entangled photons from GaAs island quantum dots by an electric field. Nat. Commun. 3, 661 (2012).

    Article  ADS  Google Scholar 

  13. Fiederling, R. et al. Injection and detection of a spin-polarized current in a light-emitting diode. Nature 402, 787–790 (1999).

    Article  ADS  Google Scholar 

  14. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  ADS  Google Scholar 

  15. Stranks, S. D.et al. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 2013).

    Article  ADS  Google Scholar 

  16. Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).

    Article  Google Scholar 

  17. Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    Article  ADS  Google Scholar 

  18. Zhu, H. et al. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14, 636–642 (2015).

    Article  ADS  Google Scholar 

  19. Eperon, G. E.et al. Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354, 861–865 2016).

    Article  ADS  Google Scholar 

  20. Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    Article  ADS  Google Scholar 

  21. Bi, D. et al. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 1, 16142 (2016).

    Article  ADS  Google Scholar 

  22. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotech. 11, 872–877 (2016).

    Article  ADS  Google Scholar 

  23. Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    Article  ADS  Google Scholar 

  24. Zhang, Q., Ha, S. T., Liu, X., Sum, T. C. & Xiong, Q. Room-temperature near-infrared high-Q perovskite whispering-gallery planar nanolasers. Nano Lett. 14, 5995–6001 (2014).

    Article  ADS  Google Scholar 

  25. Lin, Q., Armin, A., Burn, P. L. & Meredith, P. Filterless narrowband visible photodetectors. Nat. Photon. 9, 687–694 (2015).

    Article  ADS  Google Scholar 

  26. Wei, H. et al. Sensitive X-ray detectors made of methylammonium lead tribromide perovskite single crystals. Nat. Photon. 10, 333–339 (2016).

    Article  ADS  Google Scholar 

  27. Sun, D. et al. Spintronics of organometal trihalide perovskites. Preprint at https://arxiv.org/abs/1608.00993 (2016).

  28. Kepenekian, M. et al. Rashba and Dresselhaus effects in hybrid organic–inorganic perovskites: from basics to devices. ACS Nano 9, 11557–11567 (2015).

    Article  Google Scholar 

  29. Canneson, D. et al. Negatively charged and dark excitons in CsPbBr3 perovskite nanocrystals revealed by high magnetic fields. Nano Lett. 17, 6177–6183 (2017).

    Article  ADS  Google Scholar 

  30. Hsiao, Y. C., Wu, T., Li, M. & Hu, B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 27, 2899–2906 (2015).

    Article  Google Scholar 

  31. Fu, M. et al. Neutral and charged exciton fine structure in single lead halide perovskite nanocrystals revealed by magneto-optical spectroscopy. Nano Lett. 17, 2895–2901 (2017).

    Article  ADS  Google Scholar 

  32. Billing, D. G. & Lemmerer, A. Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8, 686–695 (2006).

    Article  Google Scholar 

  33. Ahn, J. et al. A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites. Mater. Horiz. 4, 851–856 (2017).

    Article  Google Scholar 

  34. Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    Article  ADS  Google Scholar 

  35. Riehl, J. P. & Richardson, F. S. Circularly polarized luminescence spectroscopy. Chem. Rev. 86, 1–16 (1986).

    Article  Google Scholar 

  36. Lightner, D. A. & Gurst, J. E. Organic Conformational Analysis and Stereochemistry from Circular Dichroism Spectroscopy Ch. 3 (Wiley, New York, NY, 2010).

    Google Scholar 

  37. Ben-Moshe, A., Teitelboim, A., Oron, D. & Markovich, G. Probing the interaction of quantum dots with chiral capping molecules using circular dichroism spectroscopy. Nano Lett. 16, 7467–7473 (2016).

    Article  ADS  Google Scholar 

  38. Schellman, J. A. & Oriel, P. Origin of the cotton effect of helical polypeptides. J. Chem. Phys. 37, 2114–2124 (1962).

    Article  ADS  Google Scholar 

  39. Slavney, A. H. et al. Chemical approaches to addressing the instability and toxicity of lead-halide perovskite absorbers. Inorg. Chem. 56, 46–55 (2017).

    Article  Google Scholar 

  40. Jiang, C. et al. Zeeman splitting via spin-valley-layer coupling in bilayer MoTe2. Nat. Commun. 8, 802 (2017).

    Article  ADS  Google Scholar 

  41. Hilborn, R. C. Einstein coefficients, cross-sections, F values, dipole-moments, and all that. Am. J. Phys. 50, 982–986 (1982).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This publication is based, in part, on work supported by an award (KUS-11-009-21) from the King Abdullah University of Science and Technology (KAUST), by the Ontario Research Fund Research Excellence Program, by the Ontario Research Fund (ORF), and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. W.G., C.J. and G.L. acknowledge support from the Singapore National Research Foundation through a 2015 NRF fellowship grant (NRF-NRFF2015-03), Singapore Ministry of Education via an AcRF Tier2 grant (nos. MOE2016-T2-2-077 and MOE2017-T2-1-163) and the A*Star QTE Programme. Q.X. acknowledges financial support from Singapore National Research Foundation via an Investigatorship Award (NRF-NRFI2015-03) and a Competitive Research Programme (NRF-CRP14-2014-03), and the Singapore Ministry of Education through AcRF Tier 2 and Tier 1 grants (MOE2015-T2-1-047 and RG 113/16). G.X. acknowledges financial support from Macau Science and Technology Development Fund (FDCT-116/2016/A3, FDCT-091/2017/A2), a Research Grant (SRG2016-00087-FST, MYRG2018-00148-IAPME) from the University of Macau, the Natural Science Foundation of China (91733302, 61605073 and 2015CB932200) and the Young 1000 Talents Global Recruitment Program of China. X.R.W. acknowledges support from a Nanyang Assistant Professorship grant from Nanyang Technological University and Academic Research Fund Tier 1 (RG108/17S) from the Singapore Ministry of Education. G.L. acknowledges the International Postdoctoral Exchange Fellowship Program of the Office of China Postdoctoral Council. H.Y. acknowledges the Research Foundation-Flanders (FWO Vlaanderen) for a postdoctoral fellowship. The authors thank A.S. Namin (QU), R.G. Sabat (QU), J.-M. Nunzi (QU), A. Xia (ICCAS) and X. Wang (ICCAS) for measuring the room-temperature SPPL. The authors thank C. Zhang (ICCAS) and Z.V. Vardeny (University of Utah) for helpful discussions. The authors also thank E. Palmiano, R. Wolowiec and D. Kopilovic for their help during the course of this study.

Author information

Authors and Affiliations

Authors

Contributions

G.L., S.H. and E.H.S. conceived the idea and designed the experiments. G.L., R.S., Z.Y., W.G., Q.X. and E.H.S. wrote the manuscript. G.L. fabricated thin films with help from L.Q. and J.X. G.L. prepared chiral ammonium salts and performed measurements (CD, PL, PLE, PLQY, TAS and XRD) with help from R.S., G.W., M.W., X.G., Q.L. and D.S. R.S. and G.X. analysed the TAS data. Z.Y. and R.Q.-B. performed the GIWAXS measurement. C.J., W.G., X.L.W., Q.X., G.W. and H.Y. performed the SSPL measurement. C.J., A.R., W.G., M.W., G.L, M.Z., X.W., O.V. and M.A. performed the SSPL data analysis and discussion. A.R. built the mathematics model for magnetic field-dependent SPPL for RDCP. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Weibo Gao, Qihua Xiong or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Fabrication, circular dichroism analysis, absorption spectra and theoretical model

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, G., Jiang, C., Sabatini, R. et al. Spin control in reduced-dimensional chiral perovskites. Nature Photon 12, 528–533 (2018). https://doi.org/10.1038/s41566-018-0220-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-018-0220-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing