Abstract
Laser-driven high-order harmonic generation1,2 provides spatially3 and temporally4 coherent tabletop sources of broadband extreme-ultraviolet (XUV) light. These sources typically operate at low repetition rates, frep ≲ 100 kHz, where phase-matched HHG is readily achieved5,6. However, many applications demand the improved counting statistics or frequency-comb precision afforded by high repetition rates, frep > 10 MHz. Unfortunately, at such high frep, phase matching is prevented by steady-state plasma accumulated in the generation volume7,8,9,10,11, strongly limiting the XUV average power. Here, we use high-temperature gas mixtures as the generation medium to increase the gas translational velocity, thereby reducing the steady-state plasma in the laser focus. This allows phase-matched XUV emission inside a femtosecond enhancement cavity at frep = 77 MHz, enabling a record generated power of ~ 2 mW in a single harmonic order. This power scaling opens up many demanding applications, including XUV frequency-comb spectroscopy12,13 of few-electron atoms and ions for precision tests of fundamental physical laws and constants14,15,16,17,18,19,20.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source
PhotoniX Open Access 19 April 2021
-
High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate
Nature Communications Open Access 28 January 2019
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout



References
McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. J. Opt. Soc. Am. B 4, 595–601 (1987).
Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B 21, L31–L36 (1988).
Bartels, R. A. et al. Generation of spatially coherent light at extreme ultraviolet wavelengths. Science 297, 376–378 (2002).
Benko, C. et al. Extreme ultraviolet radiation with coherence time greater than 1 s. Nat. Photon. 8, 530–536 (2014).
Constant, E. et al. Optimizing high harmonic generation in absorbing gases: model and experiment. Phys. Rev. Lett. 82, 1668–1671 (1999).
Paul, A. et al. Phase-matching techniques for coherent soft X-ray generation. IEEE J. Quantum Electron. 42, 14–26 (2006).
Yost, D. C. et al. Power optimization of XUV frequency combs for spectroscopy applications [Invited]. Opt. Express 19, 23483–23493 (2011).
Allison, T. K., Cingöz, A., Yost, D. C. & Ye, J. Extreme nonlinear optics in a femtosecond enhancement cavity. Phys. Rev. Lett. 107, 183903 (2011).
Carlson, D. R., Lee, J., Mongelli, J., Wright, E. M. & Jones, R. J. Intracavity ionization and pulse formation in femtosecond enhancement cavities. Opt. Lett. 36, 2991–2993 (2011).
Lee, J., Carlson, D. R. & Jones, R. J. Optimizing intracavity high harmonic generation for XUV fs frequency combs. Opt. Express 19, 23315–23326 (2011).
Mills, A. K., Hammond, T. J., Lam, M. H. C. & Jones, D. J. XUV frequency combs via femtosecond enhancement cavities. J. Phys. B 45, 142001 (2012).
Cingöz, A. et al. Direct frequency comb spectroscopy in the extreme ultraviolet. Nature 482, 68–71 (2012).
Kandula, D. Z., Gohle, C., Pinkert, T. J., Ubachs, W. & Eikema, K. S. E. Extreme ultraviolet frequency comb metrology. Phys. Rev. Lett. 105, 063001 (2010).
Drake, G. W. F. & Yan, Z.-C. High-precision spectroscopy as a test of quantum electrodynamics in light atomic systems. Can. J. Phys. 86, 45–54 (2008).
Eyler, E. E. et al. Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy. Eur. Phys. J. D 48, 43–55 (2008).
Herrmann, M. et al. Feasibility of coherent xuv spectroscopy on the 1S–2S transition in singly ionized helium. Phys. Rev. A. 79, 1–15 (2009).
Karshenboim, S. G. Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 422, 1–63 (2005).
Pálffy, A. Nuclear effects in atomic transitions. Contemp. Phys. 51, 471–496 (2010).
Ubachs, W., Salumbides, E. J., Eikema, K. S. E., De Oliveira, N. & Nahon, L. Novel techniques in VUV high-resolution spectroscopy. J. Electron Spectrosc. Relat. Phenom. 196, 159–164 (2014).
Vogel, M. & Quint, W. Aspects of fundamental physics in precision spectroscopy of highly charged ions in Penning traps. Ann. Phys. 525, 505–513 (2013).
Backus, S., Durfee, C. G., Murnane, M. M. & Kapteyn, H. C. High power ultrafast lasers. Rev. Sci. Instrum. 69, 1207–1223 (1998).
Chiang, C. T., Blättermann, A., Huth, M., Kirschner, J. & Widdra, W. High-order harmonic generation at 4 MHz as a light source for time-of-flight photoemission spectroscopy. Appl. Phys. Lett. 101, 071116 (2012).
Frietsch, B. et al. A high-order harmonic generation apparatus for time- and angle-resolved photoelectron spectroscopy. Rev. Sci. Instrum. 84, 075106 (2013).
Wallauer, R., Reimann, J., Armbrust, N., Güdde, J. & Höfer, U. Intervalley scattering in MoS2 imaged by two-photon photoemission with a high-harmonic probe. Appl. Phys. Lett. 109, 162102 (2016).
Corder, C. et al. Ultrafast extreme ultraviolet photoemission without space charge. Preprint at https://arXiv.org/abs/1801.08124v2 (2018).
Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nat. Photon. 1, 539–544 (2007).
Dörner, R. et al. Cold target recoil ion momentum spectroscopy: a ‘momentum microscope’ to view atomic collision dynamics. Phys. Rep. 330, 95–192 (2000).
Sabbar, M. et al. Combining attosecond XUV pulses with coincidence spectroscopy. Rev. Sci. Instrum. 85, 103113 (2014).
Emaury, F., Diebold, A., Saraceno, C. & Keller, U. Compact extreme ultraviolet source at megahertz pulse repetition rate with a low-noise ultrafast thin-disk laser oscillator. Optica 2, 980 (2015).
Hädrich, S. et al. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl. 4, e320 (2015).
Vernaleken, A. et al. Single-pass high-harmonic generation at 20.8 MHz repetition rate. Opt. Lett. 36, 3428–3430 (2011).
Carstens, H. et al. High-harmonic generation at 250 MHz with photon energies exceeding 100 eV. Optica 3, 366–369 (2016).
Gohle, C. et al. A frequency comb in the extreme ultraviolet. Nature 436, 234–237 (2005).
Jones, R. J., Moll, K. D., Thorpe, M. J. & Ye, J. Phase-coherent frequency combs in the vacuum ultraviolet via high-harmonic generation inside a femtosecond enhancement cavity. Phys. Rev. Lett. 94, 193201 (2005).
Pupeza, I. et al. Compact high-repetition-rate source of coherent 100 eV radiation. Nat. Photon. 7, 608–612 (2013).
Popmintchev, T., Chen, M.-C., Arpin, P., Murnane, M. M. & Kapteyn, H. C. The attosecond nonlinear optics of bright coherent X-ray generation. Nat. Photon. 4, 822–832 (2010).
Miller, D. R. in Atomic and Molecular Beam Methods Vol. 1 (ed. Scoles, G.) Ch. 2 (Oxford Univ. Press, Oxford, 1988).
Heyl, C. M., Güdde, J., L’Huillier, A. & Höfer, U. High-order harmonic generation with μJ laser pulses at high repetition rates. J. Phys. B 45, 074020 (2012).
Heyl, C. M., Arnold, C. L., Couairon, A. & L'Huillier, A. Introduction to macroscopic power scaling principles for high-order harmonic generation. J. Phys. B 50, 013001 (2017).
Crespo López-Urrutia, J. R. Frequency metrology using highly charged ions. J. Phys. Conf. Ser. 723, 012052 (2016).
Ruehl, A., Marcinkevicius, A., Fermann, M. E. & Hartl, I. 80 W, 120 fs Yb-fiber frequency comb. Opt. Lett. 35, 3015–3017 (2010).
Yost, D. C., Schibli, T. R. & Ye, J. Efficient output coupling of intracavity high-harmonic generation. Opt. Lett. 33, 1099–1101 (2008).
Acknowledgements
This work was supported by the Air Force Office of Scientific Research grant FA9550-15-1-0111, National Institute of Standards and Technology and the National Science Foundation Physics Frontier Center at JILA (PHY-1734006). C.M.H. was supported by the Swedish Research Council. K.L.C. acknowledges the support of the JILA Visiting Fellows Program.
Author information
Authors and Affiliations
Contributions
All authors contributed to the design, planning and execution of the experiment. G.P., C.M.H., S.B.S., C.B. and J.Y. analysed the data. All authors contributed to the writing of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Additional theoretical and experimental results.
Rights and permissions
About this article
Cite this article
Porat, G., Heyl, C.M., Schoun, S.B. et al. Phase-matched extreme-ultraviolet frequency-comb generation. Nature Photon 12, 387–391 (2018). https://doi.org/10.1038/s41566-018-0199-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41566-018-0199-z
This article is cited by
-
Ultra-short-pulse high-average-power megahertz-repetition-rate coherent extreme-ultraviolet light source
PhotoniX (2021)
-
Extreme-ultraviolet frequency combs for precision metrology and attosecond science
Nature Photonics (2021)
-
A fully stabilized low-phase-noise Kerr-lens mode-locked Yb:CYA laser frequency comb with an average power of 1.5 W
Applied Physics B (2020)
-
Frequency comb spectroscopy
Nature Photonics (2019)
-
High-flux ultrafast extreme-ultraviolet photoemission spectroscopy at 18.4 MHz pulse repetition rate
Nature Communications (2019)