Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides

A Publisher Correction to this article was published on 04 July 2018


Mid-infrared optical frequency combs are of significant interest for molecular spectroscopy due to the large absorption of molecular vibrational modes on the one hand, and the ability to implement superior comb-based spectroscopic modalities with increased speed, sensitivity and precision on the other hand. Here, we demonstrate a simple, yet effective, method for the direct generation of mid-infrared optical frequency combs in the region from 2.5 to 4.0 μm (that is, 2,500–4,000 cm−1), covering a large fraction of the functional group region, from a conventional and compact erbium-fibre-based femtosecond laser in the telecommunication band (that is, 1.55 μm). The wavelength conversion is based on dispersive wave generation within the supercontinuum process in an unprecedented large-cross-section silicon nitride (Si3N4) waveguide with the dispersion lithographically engineered. The long-wavelength dispersive wave can perform as a mid-infrared frequency comb, whose coherence is demonstrated via optical heterodyne measurements. Such an approach can be considered as an alternative option to mid-infrared frequency comb generation. Moreover, it has the potential to realize compact dual-comb spectrometers. The generated combs also have a fine teeth-spacing, making them suitable for gas-phase analysis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Principle of mid-IR frequency comb in dispersion-engineered Si3N4 waveguides.
Fig. 2: Comparison between SCG experiment and numerical simulation.
Fig. 3: Lithographical tuning of the mid-IR frequency comb.
Fig. 4: Coherence measurements of the mid-IR frequency comb.


  1. 1.

    Schliesser, A., Picqué, N. & Hänsch, T. W. Mid-infrared frequency combs. Nat. Photon. 6, 440–449 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

    ADS  Article  Google Scholar 

  3. 3.

    Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    ADS  Article  Google Scholar 

  4. 4.

    Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    ADS  Article  Google Scholar 

  5. 5.

    Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).

    ADS  Article  Google Scholar 

  6. 6.

    Coddington, I., Newbury, N. & Swann, W. Dual-comb spectroscopy. Optica 3, 414–426 (2016).

    Article  Google Scholar 

  7. 7.

    Suh, M.-G., Yang, Q.-F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    ADS  Article  Google Scholar 

  8. 8.

    Yu, M. et al. Silicon-chip-based mid-infrared dual-comb spectroscopy. Preprint at (2016).

  9. 9.

    Link, S. M., Maas, D. J. H. C., Waldburger, D. & Keller, U. Dual-comb spectroscopy of water vapor with a free-running semiconductor disk laser. Science 356, 1164–1168 (2017).

    Article  Google Scholar 

  10. 10.

    Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    ADS  Article  Google Scholar 

  11. 11.

    Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photon. 4, 55–57 (2010).

    ADS  Article  Google Scholar 

  12. 12.

    Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    ADS  Article  Google Scholar 

  14. 14.

    Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).

    ADS  Article  Google Scholar 

  15. 15.

    Petrov, V. Parametric down-conversion devices: the coverage of the mid-infrared spectral range by solid-state laser sources. Opt. Mater. 34, 536–554 (2012).

    ADS  Article  Google Scholar 

  16. 16.

    Keilmann, F. & Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim. Terahertz Waves 33, 479–484 (2012).

    Article  Google Scholar 

  17. 17.

    Cruz, F. C. et al. Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy. Opt. Express 23, 26814–26824 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    Hugi, A., Villares, G., Blaser, S., Liu, H. & Faist, J. Mid-infrared frequency comb based on a quantum cascade laser. Nature 492, 229–233 (2012).

    ADS  Article  Google Scholar 

  19. 19.

    Villares, G., Hugi, A., Blaser, S. & Faist, J. Dual-comb spectroscopy based on quantum-cascade-laser frequency combs. Nat. Commun. 5, 5192 (2014).

    ADS  Article  Google Scholar 

  20. 20.

    Wang, C. Y. et al. Mid-infrared optical frequency combs at 2.5 μm based on crystalline microresonators. Nat. Commun. 4, 1345 (2013).

    Article  Google Scholar 

  21. 21.

    Griffith, A. G. et al. Silicon-chip mid-infrared frequency comb generation. Nat. Commun. 6, 6299 (2015).

    Article  Google Scholar 

  22. 22.

    Luke, K., Okawachi, Y., Lamont, M. R., Gaeta, A. L. & Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 40, 4823–4826 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Yu, M., Okawachi, Y., Griffith, A. G., Lipson, M. & Gaeta, A. L. Mode-locked mid-infrared frequency combs in a silicon microresonator. Optica 3, 854–860 (2016).

    Article  Google Scholar 

  24. 24.

    Vasilyev, S., Mirov, M. & Gapontsev, V. Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers. Opt. Express 22, 5118–5123 (2014).

    ADS  Article  Google Scholar 

  25. 25.

    Lee, K. F. et al. Midinfrared frequency combs from coherent supercontinuum in chalcogenide and optical parametric oscillation. Opt. Lett. 39, 2056–2059 (2014).

    ADS  Article  Google Scholar 

  26. 26.

    Kuyken, B. et al. An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide. Nat. Commun. 6, 6310 (2015).

    Article  Google Scholar 

  27. 27.

    Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    ADS  Article  Google Scholar 

  28. 28.

    Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    ADS  Article  Google Scholar 

  29. 29.

    Cundiff, S. T. & Ye, J. Colloquium: femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    ADS  Article  Google Scholar 

  30. 30.

    Halir, R. et al. Ultrabroadband supercontinuum generation in a CMOS-compatible platform. Opt. Lett. 37, 1685–1687 (2012).

    ADS  Article  Google Scholar 

  31. 31.

    Epping, J. P. et al. On-chip visible-to-infrared supercontinuum generation with more than 495 THz spectral bandwidth. Opt. Express 23, 19596–19604 (2015).

    ADS  Article  Google Scholar 

  32. 32.

    Zhao, H. et al. Visible-to-near-infrared octave spanning supercontinuum generation in a silicon nitride waveguide. Opt. Lett. 40, 2177–2180 (2015).

    ADS  Article  Google Scholar 

  33. 33.

    Boggio, J. M. C. et al. Dispersion-optimized multicladding silicon nitride waveguides for nonlinear frequency generation from ultraviolet to mid-infrared. J. Opt. Soc. Am. B 33, 2402–2413 (2016).

    ADS  Article  Google Scholar 

  34. 34.

    Liu, X. et al. Octave-spanning supercontinuum generation in a silicon-rich nitride waveguide. Opt. Lett. 41, 2719–2722 (2016).

    ADS  Article  Google Scholar 

  35. 35.

    Porcel, M. A. G. et al. Two-octave spanning supercontinuum generation in stoichiometric silicon nitride waveguides pumped at telecom wavelengths. Opt. Express 25, 1542–1554 (2017).

    ADS  Article  Google Scholar 

  36. 36.

    Mayer, A. S. et al. Frequency comb offset detection using supercontinuum generation in silicon nitride waveguides. Opt. Express 23, 15440–15451 (2015).

    ADS  Article  Google Scholar 

  37. 37.

    Yoon, O. D. et al. Coherent ultra-violet to near-infrared generation in silica ridge waveguides. Nat. Commun. 8, 13922 (2017).

    ADS  Article  Google Scholar 

  38. 38.

    Hickstein, D. D. et al. Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Preprint at (2017).

  39. 39.

    Carlson, D. et al. Photonic-chip supercontinuum with tailored spectra for precision frequency metrology. Preprint at (2017).

  40. 40.

    Carlson, D. R. et al. Self-referenced frequency combs using high-efficiency silicon-nitride waveguides. Opt. Lett. 42, 2314–2317 (2017).

    ADS  Article  Google Scholar 

  41. 41.

    Mayer, A. S. et al. Offset-free gigahertz midinfrared frequency comb based on optical parametric amplification in a periodically poled lithium niobate waveguide. Phys. Rev. Appl. 6, 054009 (2016).

    ADS  Article  Google Scholar 

  42. 42.

    Lau, R. K. W. et al. Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. Opt. Lett. 39, 4518–4521 (2014).

    ADS  Article  Google Scholar 

  43. 43.

    Akhmediev, N. & Karlsson, M. Cherenkov radiation emitted by solitons in optical fibers. Phys. Rev. A 51, 2602–2607 (1995).

    ADS  Article  Google Scholar 

  44. 44.

    Frosz, M. H., Falk, P. & Bang, O. The role of the second zero-dispersion wavelength in generation of supercontinua and bright–bright soliton-pairs across the zero-dispersion wavelength. Opt. Express 13, 6181–6192 (2005).

    ADS  Article  Google Scholar 

  45. 45.

    Moss, D. J., Morandotti, R., Gaeta, A. L. & Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photon. 7, 597–607 (2013).

    ADS  Article  Google Scholar 

  46. 46.

    Pfeiffer, M. H. P. et al. Photonic damascene process for integrated high-Q microresonator based nonlinear photonics. Optica 3, 20–25 (2016).

    Article  Google Scholar 

  47. 47.

    Karpov, M. et al. Raman self-frequency shift of dissipative Kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).

    ADS  Article  Google Scholar 

  48. 48.

    Yan, M. et al. Mid-infrared dual-comb spectroscopy with electro-optic modulators. Light Sci. Appl. 6, e17076 (2017).

    Article  Google Scholar 

  49. 49.

    Vainio, M. & Karhu, J. Fully stabilized mid-infrared frequency comb for high-precision molecular spectroscopy. Opt. Express 25, 4190–4200 (2017).

    ADS  Article  Google Scholar 

  50. 50.

    Kara, O., Zhang, Z., Gardiner, T. & Reid, D. Dual-comb mid-infrared spectroscopy with free-running oscillators and absolute optical calibration from a radio-frequency reference. Opt. Express 25, 16072–16082 (2017).

    ADS  Article  Google Scholar 

  51. 51.

    Timmers, H. et al. Dual frequency comb spectroscopy in the molecular fingerprint region. Preprint at (2017).

  52. 52.

    Kowligy, A. S. et al. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Preprint at (2018).

  53. 53.

    Agrawal, G. Nonlinear Fiber Optics (Elsevier Academic Press, 2017).

  54. 54.

    Chen, C.-M. & Kelley, P. L. Nonlinear pulse compression in optical fibers: scaling laws and numerical analysis. J. Opt. Soc. Am. B 19, 1961–1967 (2002).

    ADS  Article  Google Scholar 

  55. 55.

    Dudley, J. M. & Coen, S. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers. Opt. Lett. 27, 1180–1182 (2002).

    ADS  Article  Google Scholar 

Download references


The authors acknowledge E. Lucas, M. Anderson, J. Jost and A. Feofanov for fruitful discussions and suggestions regarding the manuscript, and assistance with device configuration. This publication was supported by contract W31P4Q-16-1-0002 (SCOUT) from the Defense Advanced Research Projects Agency (DARPA), Defense Sciences Office (DSO). This material is based on work supported by the Air Force Office of Scientific Research, Air Force Material Command, United States Air Force (USAF) under award no. FA9550-15-1-0099. H.G. and W.W. acknowledge support by funding from the European Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie IF grant agreement no. 709249 and no. 753749, respectively. A.B., D.G. and C.-S.B. acknowledge support from the European Research Council under grant agreement ERC-2012-StG 306630-MATISSE. All samples were fabricated and grown in the Center of MicroNanoTechnology (CMi) at Swiss Federal Institute of Technology Lausanne (EPFL).

Author information




H.G. and C.H. conceived the design of large-cross-section Si3N4 waveguides. C.H fabricated the large-cross-section waveguides, and performed supercontinuum experiments with A.B. A.B. and D.G. performed supercontinuum experiments in conventional Si3N4 waveguides, under the supervision of C.-S.B. M.H.P.P. fabricated conventional waveguides. H.G. and C.Z. designed and performed coherence experiments, under the supervision of T.J.K. H.G. and W.W. performed noise analysis. All authors discussed the data. H.G. and T.J.K. wrote the manuscript with input from others. T.J.K. supervised the project.

Corresponding authors

Correspondence to Camille-Sophie Brès or Tobias J. Kippenberg.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains information on large-size Si3N4 waveguides beyond cracking limitation, mid-infrared efficiency and spectral coverage, and intensity and phase noise measurements.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Herkommer, C., Billat, A. et al. Mid-infrared frequency comb via coherent dispersive wave generation in silicon nitride nanophotonic waveguides. Nature Photon 12, 330–335 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing