Article | Published:

Room-temperature ultrafast nonlinear spectroscopy of a single molecule


Single-molecule spectroscopy aims to unveil often hidden but potentially very important contributions of single entities to a system’s ensemble response. Albeit contributing tremendously to our ever growing understanding of molecular processes, the fundamental question of temporal evolution, or change, has thus far been inaccessible, thus painting a static picture of a dynamic world. Here, we finally resolve this dilemma by performing ultrafast time-resolved transient spectroscopy on a single molecule. By tracing the femtosecond evolution of excited electronic state spectra of single molecules over hundreds of nanometres of bandwidth at room temperature, we reveal their nonlinear ultrafast response in an effective three-pulse scheme with fluorescence detection. A first excitation pulse is followed by a phase-locked de-excitation pulse pair, providing spectral encoding with 25 fs temporal resolution. This experimental realization of true single-molecule transient spectroscopy demonstrates that two-dimensional electronic spectroscopy of single molecules is experimentally within reach.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.


  1. 1.

    Musser, A. J. et al. Evidence for conical intersection dynamics mediating ultrafast singlet exciton fission. Nat. Phys. 11, 352–357 (2015).

  2. 2.

    Schoenlein, R. W., Peteanu, L. A., Mathies, R. A. & Shank, C. V. The first step in vision: femtosecond isomerization of rhodopsin. Science 254, 412–415 (1991).

  3. 3.

    Rose, T. S., Rosker, M. J. & Zewail, A. H. Femtosecond realtime observation of wave packet oscillations (resonance) in dissociation reactions. J. Chem. Phys. 88, 6672–6673 (1988).

  4. 4.

    Dostál, J., Pšenčík, J. & Zigmantas, D. Mapping the energy flow through the entire photosynthetic apparatus in situ. Nat. Chem. 8, 705–710 (2015).

  5. 5.

    Shank, C. V. Measurement of ultrafast phenomena in the femtosecond time domain. Science 219, 1027–1031 (1983).

  6. 6.

    Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).

  7. 7.

    Chong, S., Min, W. & Xie, X. S. Ground-state depletion microscopy: detection sensitivity of single-molecule optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3316–3322 (2010).

  8. 8.

    Gaiduk, A., Yorulmaz, M., Ruijgrok, P. V. & Orrit, M. Room-temperature detection of a single molecule’s absorption by photothermal contrast. Science 330, 353–356 (2010).

  9. 9.

    Min, W. et al. Imaging chromophores with undetectable fluorescence by stimulated emission microscopy. Nature 461, 1105–1109 (2009).

  10. 10.

    Moerner, W. E. & Kador, L. Optical detection and spectroscopy of single molecules in a solid. Phys. Rev. Lett. 62, 2535–2538 (1989).

  11. 11.

    Maser, A., Gmeiner, B., Utikal, T., Götzinger, S. & Sandoghdar, V. Few-photon coherent nonlinear optics with a single molecule. Nat. Photon. 10, 450–453 (2016).

  12. 12.

    Orrit, M. & Bernhard, J. Single pentacene molecules detected by fluorescence excitation in a p-terphenyl crystal. Phys. Rev. Lett. 65, 2716–2719 (1990).

  13. 13.

    Nie, S., Chiu, D. T., Zare, R. N. & Zaret, R. N. Probing individual molecules with confocal fluorescence microscopy. Science 266, 1018–1021 (1994).

  14. 14.

    Moerner, W. E. & Orrit, M. Illuminating single molecules in condensed matter. Science 283, 1670–1676 (1999).

  15. 15.

    Van Dijk, E. et al. Single-molecule pump–probe detection resolves ultrafast pathways in individual and coupled quantum systems. Phys. Rev. Lett. 94, 078302 (2005).

  16. 16.

    Hernando, J. et al. Effect of disorder on ultrafast exciton dynamics probed by single molecule spectroscopy. Phys. Rev. Lett. 97, 216403 (2006).

  17. 17.

    Tian, P. F., Keusters, D., Suzaki, Y. & Warren, W. S. Femtosecond phase-coherent two-dimensional spectroscopy. Science 300, 1553–1555 (2003).

  18. 18.

    Brinks, D. et al. Ultrafast dynamics of single molecules. Chem. Soc. Rev. 43, 2476–2491 (2014).

  19. 19.

    Toninelli, C. et al. Near-infrared single-photons from aligned molecules in ultrathin crystalline films at room temperature. Opt. Express 18, 6577–6582 (2010).

  20. 20.

    Sanders, J. N. et al. Compressed sensing for multidimensional electronic spectroscopy experiments. J. Phys. Chem. Lett. 3, 2697–2702 (2012).

  21. 21.

    Scherer, N. F. et al. Fluorescence-detected wave packet interferometry: time resolved molecular spectroscopy with sequences of femtosecond phase-locked pulses. J. Chem. Phys. 95, 1487–1511 (1991).

  22. 22.

    Albrecht, A. W., Hybl, J. D., Gallagher Faeder, S. M. & Jonas, D. M. Experimental distinction between phase shifts and time delays: implications for femtosecond spectroscopy and coherent control of chemical reactions. J. Chem. Phys. 111, 10934–10956 (1999).

  23. 23.

    Brinks, D. et al. Visualizing and controlling vibrational wave packets of single molecules. Nature 465, 905–908 (2010).

  24. 24.

    Hildner, R., Brinks, D. & van Hulst, N. F. Femtosecond coherence and quantum control of single molecules at room temperature. Nat. Phys. 7, 172–177 (2011).

  25. 25.

    Piatkowski, L., Gellings, E. & van Hulst, N. F. Broadband single-molecule excitation spectroscopy. Nat. Commun. 7, 10411 (2016).

  26. 26.

    Weigel, A., Sebesta, A. & Kukura, P. Shaped and feedback-controlled excitation of single molecules in the weak-field limit. J. Phys. Chem. Lett. 6, 4023–4037 (2015).

  27. 27.

    Kennis, J. T. M. et al. Ultrafast protein dynamics of bacteriorhodopsin probed by photon echo and transient absorption spectroscopy. J. Phys. Chem. B 106, 6067–6080 (2002).

  28. 28.

    Monmayrant, A., Weber, S. & Chatel, B. A newcomer’s guide to ultrashort pulse shaping and characterization. J. Phys. B 43, 103001 (2010).

  29. 29.

    Ernst, R. R., Bodenhausen, G. & Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford Univ., New York, 1990).

  30. 30.

    Mukamel, S. & Biggs, J. D. Communication: comment on the effective temporal and spectral resolution of impulsive stimulated Raman signals. J. Chem. Phys. 134, 161101 (2011).

  31. 31.

    Polli, D., Brida, D., Mukamel, S., Lanzani, G. & Cerullo, G. Effective temporal resolution in pump–probe spectroscopy with strongly chirped pulses. Phys. Rev. A 82, 053809 (2010).

  32. 32.

    Nicolet, A. A. L., Hofmann, C., Kol’chenko, M. A., Kozankiewicz, B. & Orrit, M. Single dibenzoterrylene molecules in an anthracene crystal: spectroscopy and photophysics. Chem. Phys. Chem. 8, 1215–1220 (2007).

  33. 33.

    Dobryakov, A. L., Kovalenko, S. A. & Ernsting, N. P. Coherent and sequential contributions to femtosecond transient absorption spectra of a rhodamine dye in solution. J. Chem. Phys. 123, 044502 (2005).

  34. 34.

    Cheng, J.-X., Volkmer, A. & Xie, X. S. Theoretical and experimental characterization of coherent anti-Stokes Raman scattering microscopy. J. Opt. Soc. Am. B 19, 1363–1375 (2002).

  35. 35.

    Weigel, A., Sebesta, A. & Kukura, P. Dark field microspectroscopy with single molecule fluorescence sensitivity. ACS Photon. 1, 848–856 (2014).

  36. 36.

    Jonas, D. M. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54, 425–463 (2003).

  37. 37.

    Shim, S.-H. & Zanni, M. T. How to turn your pump–probe instrument into a multidimensional spectrometer: 2D IR and vis spectroscopies via pulse shaping. Phys. Chem. Chem. Phys. 11, 748–761 (2009).

  38. 38.

    Tekavec, P. F., Lott, G. A. & Marcus, A. H. Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. J. Chem. Phys. 127, 214307 (2007).

  39. 39.

    Wende, T., Liebel, M., Schnedermann, C., Pethick, R. J. & Kukura, P. Population controlled impulsive vibrational spectroscopy: background- and baseline-free Raman spectroscopy of excited electronic states. J. Phys. Chem. A 118, 9976–9984 (2014).

  40. 40.

    Liebel, M., Schnedermann, C. & Kukura, P. Vibrationally coherent crossing and coupling of electronic states during internal conversion in β-carotene. Phys. Rev. Lett. 112, 198302 (2014).

  41. 41.

    De, A. K., Monahan, D., Dawlaty, J. M. & Fleming, G. R. Two-dimensional fluorescence-detected coherent spectroscopy with absolute phasing by confocal imaging of a dynamic grating and 27-step phase-cycling. J. Chem. Phys. 140, 194201 (2014).

  42. 42.

    Kane, D. J. & Trebino, R. Charaterization of arbitrary femtosecond pulses using frequency-resolved optical gating. IEEE J. Quantum Electron. 29, 571–579 (1993).

  43. 43.

    Lozovoy, V. V., Pastirk, I. & Dantus, M. Multiphoton intrapulse interference. IV. Ultrashort laser pulse spectral phase characterization and compensation. Opt. Lett. 29, 775–777 (2004).

Download references


This research was funded by the European Commission (European Research Council (ERC) Advanced Grant 670949-LightNet), the Ministerio de Economía, Industria y Competitividad (MINECO) Severo Ochoa Programme for Centres of Excellence in R&D (SEV-2015-0522, FIS2015-69258-P, FIS2015-72409-EXP), the Catalan Agència de Gestió d’Ajuts Universitaris i de Recerca (AGAUR; 2014SGR01540), Fundació Privada Cellex and Generalitat de Catalunya through the CERCA programme. M.L. acknowledges financial support from the Marie-Curie International Fellowship, and co-funding of regional, national and international programmes (COFUND). C.T. thanks the COST Action Nanoscale Quantum Optics (MP1403) and acknowledges financial support from MIUR programme Q-Sec and Ente Cassa di Risparmio di Firenze (GRANCASSA). We thank A. Weigel and C. Schnedermann for helpful discussions while preparing the manuscript.

Author information

M.L. proposed the project. M.L. experimentally realized the project and analysed all experimental data. C.T. supplied the DBT samples. N.F.v.H. and M.L. wrote the manuscript. All authors discussed the experimental results and the manuscript.

Competing interests

The authors declare no competing financial interests.

Correspondence to Matz Liebel or Niek F. van Hulst.

Electronic supplementary material

  1. Supplementary Information

    Supplementary Sections 1–6

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Further reading

Fig. 1: Concept of transient absorption spectroscopy and single-molecule implementation.
Fig. 2: Experimental implementation of spectral modulation spectroscopy and proof-of-concept experiments on single molecules.
Fig. 3: Single-molecule transient fluorescence spectroscopy and transient stimulated emission spectra.
Fig. 4: Ultrafast broadband single-molecule transient absorption spectroscopy.