Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible optical data storage below the diffraction limit

An Author Correction to this article was published on 12 January 2024

This article has been updated

Abstract

Colour centres in wide-bandgap semiconductors feature metastable charge states that can be interconverted with the help of optical excitation at select wavelengths. The distinct fluorescence and spin properties in each of these states have been exploited to show storage of classical information in three dimensions, but the memory capacity of these platforms has been thus far limited by optical diffraction. Here we leverage local heterogeneity in the optical transitions of colour centres in diamond (nitrogen vacancies) to demonstrate selective charge state control of individual point defects sharing the same diffraction-limited volume. Further, we apply this approach to dense colour centre ensembles, and show rewritable, multiplexed data storage with an areal density of 21 Gb inch–2 at cryogenic temperatures. These results highlight the advantages for developing alternative optical storage device concepts that can lead to increased storage capacity and reduced energy consumption per operation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical spectroscopy and charge control of NV centres under cryogenic conditions.
Fig. 2: Sub-diffraction NV ionization and read-out.
Fig. 3: Charge manipulation and non-destructive optical spectroscopy of a four-NV sub-diffraction cluster.
Fig. 4: Multiplexed data storage.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Degen, C. L., Reinhard, F. & Cappellaro, P. Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017).

    MathSciNet  ADS  Google Scholar 

  2. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    CAS  ADS  Google Scholar 

  3. Aslam, N., Waldherr, G., Neumann, P., Jelezko, F. & Wrachtrup, J. Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection. New J. Phys. 15, 013064 (2013).

    CAS  ADS  Google Scholar 

  4. Lozovoi, A. et al. Optical activation and detection of charge transport between individual colour centres in diamond. Nat. Electron. 4, 717–724 (2021).

    CAS  Google Scholar 

  5. Mizuochi, N. et al. Electrically driven single-photon source at room temperature in diamond. Nat. Photon. 6, 299–303 (2012).

    CAS  ADS  Google Scholar 

  6. Lozovoi, A., Vizkelethy, G., Bielejec, E. & Meriles, C. A. Imaging dark charge emitters in diamond via carrier-to-photon conversion. Sci. Adv. 8, eabl9402 (2022).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  7. Shields, B. J., Unterreithmeier, Q. P., De Leon, N. P., Park, H. & Lukin, M. D. Efficient readout of a single spin state in diamond via spin-to-charge conversion. Phys. Rev. Lett. 114, 136402 (2015).

    CAS  PubMed  ADS  Google Scholar 

  8. Hopper, D. A., Lauigan, J. D., Huang, T.-Y. & Bassett, L. C. Real-time charge initialization of diamond nitrogen-vacancy centers for enhanced spin readout. Phys. Rev. Appl. 13, 024016 (2020).

    CAS  ADS  Google Scholar 

  9. Jayakumar, H., Dhomkar, S., Henshaw, J. & Meriles, C. A. Spin readout via spin-to-charge conversion in bulk diamond nitrogen-vacancy ensembles. Appl. Phys. Lett. 113, 122404 (2018).

    ADS  Google Scholar 

  10. Zhang, Q. et al. High-fidelity single-shot readout of single electron spin in diamond with spin-to-charge conversion. Nat. Commun. 12, 1529 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  11. Irber, D. M. et al. Robust all-optical single-shot readout of nitrogen-vacancy centers in diamond. Nat. Commun. 12, 532 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  12. Dhomkar, S., Henshaw, J., Jayakumar, H. & Meriles, C. A. Long-term data storage in diamond. Sci. Adv. 2, e1600911 (2016).

    PubMed  PubMed Central  ADS  Google Scholar 

  13. Dhomkar, S., Jayakumar, H., Zangara, P. R. & Meriles, C. A. Charge dynamics in near-surface, variable-density ensembles of nitrogen-vacancy centers in diamond. Nano Lett. 18, 4046–4052 (2018).

    CAS  PubMed  ADS  Google Scholar 

  14. Wolfowicz, G. et al. Optical charge state control of spin defects in 4H-SiC. Nat. Commun. 8, 1876 (2017).

    PubMed  PubMed Central  ADS  Google Scholar 

  15. Rittweger, E., Han, K. Y., Irvine, S. E., Eggeling, C. & Hell, S. W. STED microscopy reveals crystal colour centres with nanometric resolution. Nat. Photon. 3, 144–147 (2009).

    CAS  ADS  Google Scholar 

  16. Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319, 810–813 (2008).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  17. Pfender, M., Aslam, N., Waldherr, G., Neumann, P. & Wrachtrup, J. Single-spin stochastic optical reconstruction microscopy. Proc. Natl Acad. Sci. USA 111, 14669–14674 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Rittweger, E., Wildanger, D. & Hell, S. W. Far-field fluorescence nanoscopy of diamond color centers by ground state depletion. Eur. Phys. Lett. 86, 14001 (2009).

    ADS  Google Scholar 

  19. Han, K. Y., Kim, S. K., Eggeling, C. & Hell, S. W. Metastable dark states enable ground state depletion microscopy of nitrogen vacancy centers in diamond with diffraction-unlimited resolution. Nano Lett. 10, 3199–3203 (2010).

    CAS  PubMed  ADS  Google Scholar 

  20. Chen, X. et al. Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond. Light. Sci. Appl. 4, e230 (2015).

    CAS  Google Scholar 

  21. Lamon, S., Wu, Y., Zhang, Q., Liu, X. & Gu, M. Nanoscale optical writing through upconversion resonance energy transfer. Sci. Adv. 7, eabe2209 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Harke, B. et al. Polymerization inhibition by triplet state absorption for nanoscale lithography. Adv. Mater. 25, 904–909 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).

    PubMed  ADS  Google Scholar 

  24. Li, L., Gattass, R. R., Gershgoren, E., Hwang, H. & Fourkas, J. T. Achieving λ/20 resolution by one-color initiation and deactivation of polymerization. Science 324, 910–913 (2009).

    CAS  PubMed  ADS  Google Scholar 

  25. Wollhofen, R., Katzmann, J., Hrelescu, C., Jacak, J. & Klar, T. A. 120 nm resolution and 55 nm structure size in STED-lithography. Opt. Express 21, 10831–10840 (2013).

    CAS  PubMed  ADS  Google Scholar 

  26. Fischer, J., von Freymann, G. & Wegener, M. The materials challenge in diffraction-unlimited direct-laser-writing optical lithography. Adv. Mater. 22, 3578–3582 (2010).

    CAS  PubMed  Google Scholar 

  27. Tamarat, P. H. et al. Spin-flip and spin-conserving optical transitions of the nitrogen-vacancy centre in diamond. New J. Phys. 10, 045004 (2008).

    ADS  Google Scholar 

  28. Manson, N. B., Harrison, J. P. & Sellars, M. J. Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys. Rev. B 74, 104303 (2006).

    ADS  Google Scholar 

  29. Maze, J. R. et al. Properties of nitrogen-vacancy centers in diamond: the group theoretic approach. New J. Phys. 13, 025025 (2011).

    ADS  Google Scholar 

  30. Doherty, M. W. et al. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528, 1–45 (2013).

    CAS  ADS  Google Scholar 

  31. Sipahigil, A. et al. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113, 113602 (2014).

    CAS  PubMed  ADS  Google Scholar 

  32. Bersin, E. et al. Individual control and readout of qubits in a sub-diffraction volume. npj Quant. Inf. 5, 38 (2019).

    ADS  Google Scholar 

  33. Fu, K.-M. C. et al. Observation of the dynamic Jahn-Teller effect in the excited states of nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 256404 (2009).

    PubMed  ADS  Google Scholar 

  34. Baier, S. et al. Orbital and spin dynamics of single neutrally-charged nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 125, 193601 (2020).

    CAS  PubMed  ADS  Google Scholar 

  35. Edmonds, A. M. et al. Characterization of CVD diamond with high concentrations of nitrogen for magnetic-field sensing applications. Mater. Quant. Technol. 1, 025001 (2021).

    ADS  Google Scholar 

  36. Oberg, L. M. et al. Spin coherent quantum transport of electrons between defects in diamond. Nanophotonincs 8, 1975–1984 (2019).

    CAS  Google Scholar 

  37. Doherty, M. W. et al. Towards a room-temperature spin quantum bus in diamond via optical spin injection, transport and detection. Phys. Rev. X 6, 041035 (2016).

    Google Scholar 

  38. McCullian, B. A., Cheung, H. F. H., Chen, H. Y. & Fuchs, G. D. Quantifying the spectral diffusion of N-V centers by symmetry. Phys. Rev. Appl. 18, 064011 (2022).

    CAS  ADS  Google Scholar 

  39. Zhang, Z.-H. et al. Optically detected magnetic resonance in neutral silicon vacancy centers in diamond via bound exciton states. Phys. Rev. Lett. 125, 237402 (2020).

    CAS  PubMed  ADS  Google Scholar 

  40. Kazimierczuk, T., Fröhlich, D., Scheel, S., Stolz, H. & Bayer, M. Giant Rydberg excitons in the copper oxide Cu2O. Nature 514, 343–347 (2014).

    CAS  PubMed  ADS  Google Scholar 

  41. Monge, R. et al. Spin dynamics of a solid-state qubit in proximity to a superconductor. Nano Lett. 23, 422–428 (2023).

    CAS  PubMed  ADS  Google Scholar 

  42. Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    CAS  PubMed  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge useful discussions with D. Irber, F. Reinhard and A. Lozovoi. R.M. and C.A.M. acknowledge support from the National Science Foundation through grant NSF-1914945; T.D. and C.A.M. acknowledge support from the National Science Foundation through grant NSF-2216838. R.M. acknowledges support from NSF-2316693. We all acknowledge the access to the facilities and research infrastructure of the National Science Foundation CREST IDEALS, grant NSF-2112550.

Author information

Authors and Affiliations

Authors

Contributions

R.M., T.D. and C.A.M. conceived the experiments. R.M. and T.D. conducted the experiments and analysed the data with C.A.M.’s assistance. C.A.M. supervised the project and wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Carlos A. Meriles.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Discussion Sections 1–8 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monge, R., Delord, T. & Meriles, C.A. Reversible optical data storage below the diffraction limit. Nat. Nanotechnol. 19, 202–207 (2024). https://doi.org/10.1038/s41565-023-01542-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01542-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing