Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization

Abstract

Strongly confined colloidal quantum dots have been investigated for low-cost light emission and lasing for nearly two decades. However, known materials struggle to combine technologically relevant metrics of low-threshold and long inverted-state lifetime with a material gain coefficient fit to match cavity losses, particularly under electrical excitation. Here we show that bulk nanocrystals of CdS combine an exceptionally large material gain of 50,000 cm−1 with best-in-class gain thresholds below a single exciton per nanocrystal and 3 ns gain lifetimes not limited by non-radiative Auger processes. We quantitatively account for these findings by invoking a strong bandgap renormalization effect, unobserved in nanocrystals to date, to the best of our knowledge. Next, we demonstrate broadband amplified spontaneous emission and lasing under quasi-continuous-wave conditions. Our results highlight the prospects of bulk nanocrystals for lasing from solution-processable materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photophysical properties of CdS BNCs.
Fig. 2: ASE in thin-film CdS BNCs.
Fig. 3: Optically pumped lasing.
Fig. 4: Quantitative bulk gain model.
Fig. 5: Gain threshold and dynamics of CdS BNCs.

Similar content being viewed by others

Data availability

The datasets are available from the corresponding author upon reasonable request.

References

  1. Zhang, Q., Tao, W., Huang, J., Xia, R. & Cabanillas-Gonzalez, J. Toward electrically pumped organic lasers: a review and outlook on material developments and resonator architectures. Adv. Photon. Res. 2, 2000155 (2021).

    Google Scholar 

  2. Park, Y.-S., Roh, J., Diroll, B. T., Schaller, R. D. & Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 6, 382–401 (2021).

    CAS  Google Scholar 

  3. Geiregat, P., Van Thourhout, D. & Hens, Z. A bright future for colloidal quantum dot lasers. npg Asia Mater. 11, 41 (2019).

    CAS  Google Scholar 

  4. Pietryga, M. et al. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 116, 10513–10622 (2016).

    CAS  Google Scholar 

  5. Shirasaki, Y., Supran, G. J., Bawendi, M. G. & Bulović, V. Emergence of colloidal quantum-dot light-emitting technologies. Nat. Photon. 7, 13–23 (2012).

    Google Scholar 

  6. Semonin, O. E. et al. Peak external photocurrent quantum efficiency exceeding 100% via MEG in a quantum dot solar cell. Science 334, 1530–1533 (2011).

    CAS  Google Scholar 

  7. Deng, Z., Jeong, K. S. & Guyot-Sionnest, P. Colloidal quantum dots intraband photodetectors. ACS Nano 8, 11707–11714 (2014).

    CAS  Google Scholar 

  8. Livache, C., Martinez, B., Goubet, N., Ramade, J. & Lhuillier, E. Road map for nanocrystal based infrared photodetectors. Front. Chem. 6, 575 (2018).

  9. Garcia de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. Solution-processed semiconductors for next-generation photo-detectors. Nat. Rev. Mater. 2, 16100 (2017).

    Google Scholar 

  10. Klimov, V. I. et al. Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314–317 (2000).

    CAS  Google Scholar 

  11. Klimov, V. I. et al. Single-exciton optical gain in semiconductor nanocrystals. Nature 447, 441–446 (2007).

    CAS  Google Scholar 

  12. Wu, K., Park, Y.-S., Lim, J. & Klimov, V. I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 12, 1140–1147 (2017).

    CAS  Google Scholar 

  13. Geiregat, P. et al. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots. Nat. Mater. 17, 35–42 (2017).

    Google Scholar 

  14. Cassidy, J. et al. Quantum shells boost the optical gain of lasing media. ACS Nano 16, 3017–3026 (2022).

    CAS  Google Scholar 

  15. Ithurria, S. et al. Colloidal nanoplatelets with two-dimensional electronic structure. Nat. Mater. 10, 936–941 (2011).

    CAS  Google Scholar 

  16. Guzelturk, B., Pelton, M., Olutas, M. & Demir, H. V. Giant modal gain coefficients in colloidal II-VI nanoplatelets. Nano Lett. 19, 277–282 (2018).

    Google Scholar 

  17. Geiregat, P. et al. Thermodynamic equilibrium between excitons and excitonic molecules dictates optical gain in colloidal CdSe quantum wells. J. Phys. Chem. Lett. 10, 3637–3644 (2019).

    CAS  Google Scholar 

  18. Li, Q., Liu, Q., Schaller, R. D. & Lian, T. Reducing the optical gain threshold in two-dimensional CdSe nanoplatelets by the giant oscillator strength transition effect. J. Phys. Chem. Lett. 10, 1624–1632 (2019).

    CAS  Google Scholar 

  19. Bisschop, S., Geiregat, P., Aubert, T. & Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 12, 9011–9021 (2018).

    CAS  Google Scholar 

  20. Fan, F. et al. Continuous-wave lasing in colloical quantum dot solids enabled by facet-selective epitaxy. Nature 544, 75–79 (2017).

    CAS  Google Scholar 

  21. Lim, J., Park, Y.-S. & Klimov, V. I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 17, 42–49 (2017).

    Google Scholar 

  22. Yang, Z., Pelton, M., Fedin, I. & Talapin, D. V. A room temperature continuous-wave nanolaser using colloidal quantum wells. Nat. Commun. 8, 143 (2017).

  23. Xie, W. et al. On-chip integrated quantum-dot silicon-nitride microdisk lasers. Adv. Mater. 29, 1604866 (2017).

  24. Xie, W. et al. Colloidal quantum dots enabling coherent light sources for integrated silicon-nitride photonics. IEEE J. Sel. Topics Quantum Electron. 23, 8200913 (2017).

  25. Jung, H. et al. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1,000 A cm–2. Nat. Commun. 13, 3734 (2022).

    CAS  Google Scholar 

  26. Ahn, N. et al. Electrically driven amplified spontaneous emission from colloidal quantum dots. Nature 617, 79–85 (2023).

    CAS  Google Scholar 

  27. Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

  28. Hens, Z. & Moreels, I. Light absorption by colloidal semiconductor quantum dots. J. Mater. Chem. 22, 10406 (2012).

    CAS  Google Scholar 

  29. Ghobadi, N. Band gap determination using absorption spectrum fitting procedure. Int. Nano Lett. 3, 2 (2013).

    Google Scholar 

  30. Maes, J. et al. Size and concentration determination of colloidal nanocrystals by small-angle X-ray scattering. Chem. Mater. 30, 3952–3962 (2018).

    CAS  Google Scholar 

  31. Thambidurai, M. et al. Strong quantum confinement effect in nanocrystalline CdS. J. Mater. Sci. 45, 3254–3258 (2010).

    CAS  Google Scholar 

  32. Aubert, T. et al. General expression for the size-dependent optical properties of quantum dots. Nano Lett. 22, 1778–1785 (2022).

    CAS  Google Scholar 

  33. Geiregat, P. et al. Using bulk-like nanocrystals to probe intrinsic optical gain characteristics of inorganic lead halide perovskites. ACS Nano 12, 10178–10188 (2018).

    CAS  Google Scholar 

  34. Rodà, C. et al. Stimulated emission through an electron-hole plasma in colloidal CdSe quantum rings. Nano Lett. 21, 10062–10069 (2021).

    Google Scholar 

  35. Di Stasio, F., Polovitsyn, A., Angeloni, I., Moreels, I. & Krahne, R. Broadband amplified spontaneous emission and random lasing from wurtzite CdSe/CdS ‘giant-shell’ nanocrystals. ACS Photon. 3, 2083–2088 (2016).

    Google Scholar 

  36. Aellen, M. & Norris, D. J. Understanding optical gain: which confinement factor is correct? ACS Photon. 9, 3498–3505 (2022).

    CAS  Google Scholar 

  37. Hirose, K. et al. Watt-class high-power, high-beam-quality photonic-crystal lasers. Nat. Photon. 8, 406–411 (2014).

    CAS  Google Scholar 

  38. Sakata, R. et al. Photonic-crystal surface-emitting lasers with modulated photonic crystals enabling 2D beam scanning and various beam pattern emission. Appl. Phys. Lett. 122, 130503 (2023).

  39. Pinchetti, V. et al. Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano 10, 6877–6887 (2016).

    CAS  Google Scholar 

  40. Zhu, Y. et al. On-chip single-mode distributed feedback colloidal quantum dot laser under nanosecond pumping. ACS Photon. 4, 2446–2452 (2017).

    CAS  Google Scholar 

  41. Adachi, M. M. et al. Microsecond-sustained lasing from colloidal quantum dot solids. Nat. Commun. 6, 8694 (2015).

    CAS  Google Scholar 

  42. Chen, K., Gallaher, J. K., Barker, A. J. & Hodgkiss, J. M. Transient grating photoluminescence spectroscopy: an ultrafast method of gating broadband spectra. J. Phys. Chem. Lett. 5, 1732–1737 (2014).

    CAS  Google Scholar 

  43. Pelant, I. & Valenta, J. Luminescence Spectroscopy of Semiconductors (Oxford Univ. Press, 2012).

  44. Geiregat, P. et al. Coulomb shifts upon exciton addition to photoexcited PbS colloidal quantum dots. J. Phys. Chem. C 118, 22284–22290 (2014).

    CAS  Google Scholar 

  45. Dneprovskii, V. S., Klimov, V. I. & Novikov, M. G. Dynamics and mechanisms of recombination of electron-hole plasma and high-density excitons in CdS and CdSe. Sov. Phys. JETP 3, 468–478 (1991).

    Google Scholar 

  46. Tränkle, B. et al. Dimensionality dependence of the band-gap renomalization in two- and three dimensional electron-hole plasmas. Phys. Rev. Lett. 58, 419 (1987).

  47. Saito, H. & Göbel, E. Picosecond spectroscopy of highly excited Cds. Phys. Rev. B 31, 2360–2369 (1985).

    CAS  Google Scholar 

  48. Asano, K. & Yoshioka, T. Exciton-Mott physics in two-dimensional electron-hole systems: phase diagram and single-particle spectra. J. Phys. Soc. Jpn 82, 084702 (2014).

    Google Scholar 

  49. Melnychuk, C. & Guyot-Sionnest, P. Multicarrier dynamics in quantum dots. Chem. Rev. 121, 2325–2372 (2021).

    CAS  Google Scholar 

  50. Aubert, T. et al. Homogeneously alloyed CdSeS quantum dots: an efficient synthesis for full optical tunability. Chem. Mater. 25, 2388–2390 (2013).

    CAS  Google Scholar 

  51. Liu, Y. K. et al. Wavelength-tunable lasing in single-crystal CdS1–XSeX nanoribbons. Nanotechnology 18, 365606 (2007).

Download references

Acknowledgements

I.T. acknowledges support from FWO-Vlaanderen, grant no. 1S96819N. Z.H., P.G. and M.S. acknowledge funding from the Research Foundation—Flanders (FWO-Vlaanderen) under the SBO PROCEED project (no. S0002019N). Z.H. acknowledges Ghent University for funding (BOF-GOA 01G01019 MANAWORK, FWO Project G0B2921N). D.V.T. acknowledges funding through FWO (G0B2921N). I.W., J.H. and K.C. acknowledge support from the Marsden Fast-Start Fund by the Royal Society of New Zealand through contract VUW1715. I.M., P.G. and S.A.C. acknowledge funding from the Research Foundation—Flanders (FWO-Vlaanderen under grant no. G037221N—HITEC). The TEM measurements were performed at the UGent TEM Core Facility and the spectroscopic measurements at the UGent NoLIMITS Core Facility.

Author information

Authors and Affiliations

Authors

Contributions

I.T. measured the transient absorption data; developed the modelling framework; fabricated and measured the chips for the ASE, VSL and laser measurements; and analysed the data. M.S. and A.H.K. developed the CdS nanocrystal synthesis and carried out the structural characterization. I.W. and K.C. performed the transient PL measurements. S.A.C. fabricated the CdS thin films for the ASE, VSL and lasing experiments. K.C., J.H., I.M., D.V.T., Z.H. and P.G. were involved to analyse and discuss the results and supervise the research. P.G. wrote the manuscript together with I.T.

Corresponding author

Correspondence to Pieter Geiregat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Sergio Brovelli and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–11, Figs. 1–17, Tables 1–4 and discussion.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanghe, I., Samoli, M., Wagner, I. et al. Optical gain and lasing from bulk cadmium sulfide nanocrystals through bandgap renormalization. Nat. Nanotechnol. 18, 1423–1429 (2023). https://doi.org/10.1038/s41565-023-01521-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01521-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing