Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure

Abstract

Lithium phosphorus oxynitride (LiPON) is an amorphous solid electrolyte that has been extensively studied over the last three decades. Despite the promise of pairing it with various electrode materials, LiPON’s rigidity and air sensitivity set limitations to understanding its intrinsic properties. Here we report a methodology to synthesize LiPON in a free-standing form that manifests remarkable flexibility and a Young’s modulus of 33 GPa. We use solid-state nuclear magnetic resonance and differential scanning calorimetry to quantitatively reveal the chemistry of the Li/LiPON interface and the presence of a well-defined LiPON glass-transition temperature of 207 °C. Combining interfacial stress and a gold seeding layer, our free-standing LiPON shows a uniformly dense deposition of lithium metal without the aid of external pressure. This free-standing LiPON film offers opportunities to study fundamental properties of LiPON for interface engineering for solid-state batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis procedure and basic properties of FS-LiPON.
Fig. 2: Interfacial chemistry, thermal properties and mechanical properties of FS-LiPON.
Fig. 3: Electrochemical deposition and analysis on FS-LiPON.
Fig. 4: Stress analysis and proposed criteria for uniform lithium deposition.

Similar content being viewed by others

Data availability

Additional data related to this paper are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Yu, X., Bates, J. B., Jellison, G. E. & Hart, F. X. A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524 (1997).

    Article  CAS  Google Scholar 

  2. Bates, J. B. et al. Electrical properties of amorphous lithium electrolyte thin films. Solid State Ion. 29, 42–44 (1992).

    Google Scholar 

  3. Lacivita, V. et al. Resolving the amorphous structure of lithium phosphorus oxynitride (Lipon). J. Am. Chem. Soc. 140, 11029–11038 (2018).

    Article  CAS  Google Scholar 

  4. Santhanagopalan, D. et al. Interface limited lithium transport in solid-state batteries. J. Phys. Chem. Lett. 5, 298–303 (2014).

    Article  CAS  Google Scholar 

  5. Wang, Z. et al. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett. 16, 3760–3767 (2016).

    Article  CAS  Google Scholar 

  6. Wang, Z. et al. Effects of cathode electrolyte interfacial (CEI) layer on long term cycling of all-solid-state thin-film batteries. J. Power Sources 324, 342–348 (2016).

    Article  CAS  Google Scholar 

  7. Cheng, D. et al. Unveiling the stable nature of the solid electrolyte interphase between lithium metal and lipon via cryogenic electron microscopy. Joule 4, 2484–2500 (2020).

    Article  CAS  Google Scholar 

  8. Hood, Z. D. et al. Elucidating interfacial stability between lithium metal anode and Li phosphorus oxynitride via in situ electron microscopy. Nano Lett. 21, 151–157 (2021).

    Article  CAS  Google Scholar 

  9. Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. https://doi.org/10.1016/j.trechm.2019.06.013 (2019).

  10. Herbert, E. G., Tenhaeff, W. E., Dudney, N. J. & Pharr, G. M. Mechanical characterization of LiPON films using nanoindentation. Thin Solid Films 520, 413–418 (2011).

    Article  CAS  Google Scholar 

  11. Xu, F. et al. Complete elastic characterization of lithium phosphorous oxynitride films using picosecond ultrasonics. Thin Solid Films 548, 366–370 (2013).

    Article  CAS  Google Scholar 

  12. Zhao, S., Fu, Z. & Qin, Q. A solid-state electrolyte lithium phosphorus oxynitride film prepared by pulsed laser deposition. Thin Solid Films 415, 108–113 (2002).

    Article  CAS  Google Scholar 

  13. Kozen, A. C., Pearse, A. J., Lin, C. F., Noked, M. & Rubloff, G. W. Atomic layer deposition of the solid electrolyte LiPON. Chem. Mater. 27, 5324–5331 (2015).

    Article  CAS  Google Scholar 

  14. Liu, W. Y., Fu, Z. W., Li, C. L. & Qin, Q. Z. Lithium phosphorus oxynitride thin film fabricated by a nitrogen plasma-assisted deposition of E-beam reaction evaporation. Electrochem. Solid-State Lett. 7, 36–41 (2004).

    Article  Google Scholar 

  15. Nowak, S., Berkemeier, F. & Schmitz, G. Ultra-thin LiPON films—fundamental properties and application in solid state thin film model batteries. J. Power Sources 275, 144–150 (2015).

    Article  CAS  Google Scholar 

  16. Kim, H. T., Mun, T., Park, C., Jin, S. W. & Park, H. Y. Characteristics of lithium phosphorous oxynitride thin films deposited by metal–organic chemical vapor deposition technique. J. Power Sources 244, 641–645 (2013).

    Article  CAS  Google Scholar 

  17. Muñoz, F. et al. Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ion. 179, 574–579 (2008).

    Article  Google Scholar 

  18. Westover, A. S. et al. Plasma synthesis of spherical crystalline and amorphous electrolyte nanopowders for solid-state batteries. ACS Appl. Mater. Interfaces 12, 11570–11578 (2020).

    Article  CAS  Google Scholar 

  19. López-Aranguren, P. et al. Crystalline LiPON as a bulk-type solid electrolyte. ACS Energy Lett. https://doi.org/10.1021/acsenergylett.0c02336 (2021).

  20. Bates, J. B. et al. Fabrication and characterization of amorphous lithium electrolyte thin films and rechargeable thin-film batteries. J. Power Sources 43, 103–110 (1993).

    Article  CAS  Google Scholar 

  21. Schwöbel, A., Hausbrand, R. & Jaegermann, W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission. Solid State Ion. 273, 51–54 (2015).

    Article  Google Scholar 

  22. Le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ion. 253, 151–156 (2013).

    Article  Google Scholar 

  23. Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

  24. Marple, M. A. T. et al. Local structure of glassy lithium phosphorus oxynitride thin films: a combined experimental and ab initio approach. Angew. Chem. Int. Ed. 59, 22185–22193 (2020).

    Article  CAS  Google Scholar 

  25. Köcher, S. S. et al. Chemical shift reference scale for Li solid state NMR derived by first-principles DFT calculations. J. Magn. Reson. 297, 33–41 (2018).

    Article  Google Scholar 

  26. Vieira, E. et al. Flexible solid-state Ge–LiCoO2 battery: from materials to device application. Adv. Mater. Lett. 8, 820–829 (2017).

    Article  CAS  Google Scholar 

  27. Sepúlveda, A., Criscuolo, F., Put, B. & Vereecken, P. M. Effect of high temperature LiPON electrolyte in all solid state batteries. Solid State Ion. 337, 24–32 (2019).

    Article  Google Scholar 

  28. Kalnaus, S., Westover, A. S., Kornbluth, M., Herbert, E. & Dudney, N. J. Resistance to fracture in the glassy solid electrolyte Lipon. J. Mater. Res. https://doi.org/10.1557/s43578-020-00098-x (2021).

  29. Ma, D., Chung, W. O., Liu, J. & He, J. Determination of Young’s modulus by nanoindentation. Sci. China E 47, 398–408 (2004).

    Article  CAS  Google Scholar 

  30. Abadias, G. & Daniel, R. in Handbook of Modern Coating Technologies (eds Aliofkhazraei, M. et al.) 359–436 (Elsevier, 2021).

  31. Swadener, J. G., Taljat, B. & Pharr, G. M. Measurement of residual stress by load and depth sensing indentation with spherical indenters. J. Mater. Res. 16, 2091–2102 (2001).

    Article  CAS  Google Scholar 

  32. Lee, J. Z. et al. Cryogenic focused ion beam characterization of lithium metal anodes. ACS Energy Lett. 4, 489–493 (2019).

    Article  CAS  Google Scholar 

  33. Wang, M. J., Carmona, E., Gupta, A., Albertus, P. & Sakamoto, J. Enabling ‘lithium-free’ manufacturing of pure lithium metal solid-state batteries through in situ plating. Nat. Commun. 11, 5201 (2020).

  34. Lee, Y. G. et al. High-energy long-cycling all-solid-state lithium metal batteries enabled by silver–carbon composite anodes. Nat. Energy 5, 299–308 (2020).

    Article  CAS  Google Scholar 

  35. Motoyama, M., Ejiri, M. & Iriyama, Y. Modeling the nucleation and growth of Li at metal current collector/LiPON interfaces. J. Electrochem. Soc. 162, A7067–A7071 (2015).

    Article  CAS  Google Scholar 

  36. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  CAS  Google Scholar 

  37. Lee, K., Kazyak, E., Wang, M. J., Dasgupta, N. P. & Sakamoto, J. Analyzing void formation and rewetting of thin in situ-formed Li anodes on LLZO. Joule 6, 2547–2565 (2022).

    Article  CAS  Google Scholar 

  38. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge funding support from the US Department of Energy, Office of Basic Energy Sciences, under award number DE-SC0002357. The FIB/SEM in this work was performed in part at the San Diego Nanotechnology Infrastructure (SDNI) of the University of California San Diego, a member of the National Nanotechnology Coordinated Infrastructure, which is supported by the National Science Foundation (grant ECCS-2025752). NMR was performed under the auspices of the US Department of Energy by Lawrence Livermore National Laboratory under contract number DE-AC52-07NA27344. XPS and DSC were performed at the UC Irvine Materials Research Institute (IMRI) using instrumentation funded in part by the National Science Foundation Major Research Instrumentation Program under grant numbers CHE-1338173 and DMR-2011967.

Author information

Authors and Affiliations

Authors

Contributions

D.C., M.Z. and Y.S.M. conceived the ideas. D.C., T.W., B.L., R.S. and B.S. prepared the thin-film samples. The FS-LiPON Li–Cu cell was designed by D.C. B.H., M.Z. and G.Z., and fabricated by D.C. M.M. performed and analysed ss-NMR measurements. D.C. conducted cryo-FIB/SEM and electrical measurements. D.C. and H.N. collected X-ray diffraction data. D.C., J.B. and P.H. collected and analysed the nanoindentation data. D.C., Y.Y. and W.L. collected XPS data. D.C., M.Z., Y.S.M., T.W., M.M., G.Z. and B.H. co-wrote the paper. All authors discussed the results and commented on the paper. All authors have approved the final paper.

Corresponding authors

Correspondence to Minghao Zhang or Ying Shirley Meng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Optical appearance of FS-LiPON film.

a, Photo of a piece of transparent and flexible FS-LiPON film. b, FS-LiPON films with different sizes in a glass vial.

Extended Data Fig. 2

Cross-section image of FS-LiPON with EDS mapping overlaid on the left part.

Extended Data Fig. 3 XRD measurement and surface EDS mapping on FS-LiPON film.

a, XRD pattern of FS-LiPON thin film. b, SEM image and EDS mapping on the surface of FS-LiPON.

Source data

Extended Data Fig. 4 XPS spectra of O 1s, N 1s, P 2p and Li 1s regions collected on FS-LiPON and sub-LiPON thin film.

Note that the peak located at 403.5 eV in N 1s region of sub-LiPON can be attributed to NO2 species, which is not present in the FS-LiPON.

Source data

Extended Data Fig. 5

XPS survey spectra of FS-LiPON and sub-LiPON films.

Source data

Extended Data Fig. 6 EIS testing for FS-LiPON film.

a, Testing configuration for the EIS measurement. b, EIS result collected on sub-LiPON.

Source data

Extended Data Fig. 7 Li7 MAS NMR spectrum of Li/FS-LiPON sample.

The spectrum clearly shows the presence of Li metal in Li/FS-LiPON sample.

Source data

Extended Data Fig. 8 Air exposure test on FS-LiPON film.

Photos of the same piece of FS-LiPON film before air exposure (a) and after air exposure (b), showing the film shape change due to stiffening.

Extended Data Fig. 9 Flexibility test on FS-LiPON film.

Time-lapse series of images during the flexibility test on FS-LiPON films with thicknesses of 1.7 μm, 2.6 μm and 3.7 μm, respectively. A flathead tweezer was used to apply force on the FS-LiPON films whilst a video was taken to record the bending and breakage of the film. As the time-lapse series of images show, all the FS-LiPON films exhibit remarkable flexibility upon bending. Right before film breakage, the 1.7-mm-thick film shows a high extent of bending compared with the 3.7-mm-thick film, indicating a higher flexibility.

Extended Data Table 1 Existing methods for LiPON synthesis

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and Discussion.

Supplementary Video 1

A live demonstration of the flexibility and transparency of the FS-LiPON film.

Supplementary Video 2

A live demonstration of the stiffening of the FS-LiPON film after air exposure.

Supplementary Video 3

A live demonstration of the bending test of the FS-LiPON film.

Source data

Source Data Fig. 1

Source data of the XPS plot, EIS and DC polarization result in Fig. 1.

Source Data Fig. 2

Source data of the ss-NMR results, DSC measurement and nanoindentation results in Fig. 2.

Source Data Fig. 3

Source data of the Li plating voltage curve in Fig. 3.

Source Data Fig. 4

Source data of the interfacial stress analysis in Fig. 4.

Source Data Extended Data Fig. 3

Source data of the XRD results in Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data of the detailed XPS spectra in Extended Data Fig. 4.

Source Data Extended Data Fig. 5

Source data of the survey XPS spectra in Extended Data Fig. 5.

Source Data Extended Data Fig. 6

Source data of the EIS plot in Extended Data Fig. 6.

Source Data Extended Data Fig. 7

Source data of the 7Li NMR spectrum in Extended Data Fig. 7.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, D., Wynn, T., Lu, B. et al. A free-standing lithium phosphorus oxynitride thin film electrolyte promotes uniformly dense lithium metal deposition with no external pressure. Nat. Nanotechnol. 18, 1448–1455 (2023). https://doi.org/10.1038/s41565-023-01478-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01478-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing