Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium

Abstract

The therapeutic potential of liposomes to deliver drugs into inflamed tissue is well documented. Liposomes are believed to largely transport drugs into inflamed joints by selective extravasation through endothelial gaps at the inflammatory sites, known as the enhanced permeation and retention effect. However, the potential of blood-circulating myeloid cells for the uptake and delivery of liposomes has been largely overlooked. Here we show that myeloid cells can transport liposomes to inflammatory sites in a collagen-induced arthritis model. It is shown that the selective depletion of the circulating myeloid cells reduces the accumulation of liposomes up to 50–60%, suggesting that myeloid-cell-mediated transport accounts for more than half of liposomal accumulation in inflamed regions. Although it is widely believed that PEGylation inhibits premature liposome clearance by the mononuclear phagocytic system, our data show that the long blood circulation times of PEGylated liposomes rather favours uptake by myeloid cells. This challenges the prevailing theory that synovial liposomal accumulation is primarily due to the enhanced permeation and retention effect and highlights the potential for other pathways of delivery in inflammatory diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the CIA model, the two different liposomes used in this study and their respective biodistribution over 24 h.
Fig. 2: Liposome engulfment by myeloid cells in CIA DBA/1 mice.
Fig. 3: Adoptive cell transfer experiment in C57BL/6 CIA mice.
Fig. 4: Liposome accumulation in myeloid-cell-depleted CIA mice.
Fig. 5: Physicochemical characterization and in vivo biodistribution of mRNA LNPs in CIA C57BL/6 mice.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Other relevant data are available for research purposes from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    Google Scholar 

  2. Giulimondi, F. et al. Interplay of protein corona and immune cells controls blood residency of liposomes. Nat. Commun. 10, 3686 (2019).

    CAS  Google Scholar 

  3. Suk, J. S., Xu, Q., Kim, N., Hanes, J. & Ensign, L. M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99, 28–51 (2016).

    CAS  Google Scholar 

  4. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl Acad. Sci. USA 105, 14265–14270 (2008).

  5. Ren, H. et al. Role of liposome size, surface charge, and PEGylation on rheumatoid arthritis targeting therapy. ACS Appl. Mater. Interfaces 11, 20304–20315 (2019).

    CAS  Google Scholar 

  6. Yang, M., Feng, X., Ding, J., Chang, F. & Chen, X. Nanotherapeutics relieve rheumatoid arthritis. J. Control. Release 252, 108–124 (2017).

    CAS  Google Scholar 

  7. Gawne, P. J. et al. PET imaging of liposomal glucocorticoids using 89 Zr-oxine: theranostic applications in inflammatory arthritis. Theranostics 10, 3867–3879 (2020).

    CAS  Google Scholar 

  8. Metselaar, J. M. et al. Liposomal targeting of glucocorticoids to synovial lining cells strongly increases therapeutic benefit in collagen type II arthritis. Ann. Rheum. Dis. 63, 348–353 (2004).

    CAS  Google Scholar 

  9. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent Smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  10. Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 244, 108–121 (2016).

    CAS  Google Scholar 

  11. Davignon, J. L. et al. Targeting monocytes/macrophages in the treatment of rheumatoid arthritis. Rheumatology 52, 590–598 (2013).

    CAS  Google Scholar 

  12. Kaplan, M. J. Role of neutrophils in systemic autoimmune diseases. Arthritis Res. Ther. 15, 219 (2013).

    Google Scholar 

  13. Izar, M. C. O. et al. Monocyte subtypes and the CCR2 chemokine. Clin. Sci. (Lond.) 131, 1215–1224 (2017).

  14. McInnes, I. B. & Schett, G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet 389, 2328–2337 (2017).

    CAS  Google Scholar 

  15. Dammes, N. et al. Conformation-sensitive targeting of lipid nanoparticles for RNA therapeutics. Nat. Nanotechnol. 16, 1030–1038 (2021).

    CAS  Google Scholar 

  16. Sofias, A. M., Andreassen, T. & Hak, S. Nanoparticle ligand-decoration procedures affect in vivo interactions with immune cells. Mol. Pharm. 15, 5754–5761 (2018).

    CAS  Google Scholar 

  17. Chu, D., Gao, J. & Wang, Z. Neutrophil-mediated delivery of therapeutic nanoparticles across blood vessel barrier for treatment of inflammation and infection. ACS Nano 9, 11800–11811 (2015).

    CAS  Google Scholar 

  18. Karathanasis, E. et al. Selective targeting of nanocarriers to neutrophils and monocytes. Ann. Biomed. Eng. 37, 1984–1992 (2009).

    Google Scholar 

  19. Veiga, N. et al. Leukocyte-specific siRNA delivery revealing IRF8 as a potential anti-inflammatory target. J. Control. Release 313, 33–41 (2019).

    CAS  Google Scholar 

  20. Vargason, A. M., Anselmo, A. C. & Mitragotri, S. The evolution of commercial drug delivery technologies. Nat. Biomed. Eng. 5, 951–967 (2021).

  21. El Kebir, D. E. & Filep, J. G. Modulation of neutrophil apoptosis and the resolution of inflammation through β2 integrins. Front. Immunol. 4, 60 (2013).

    Google Scholar 

  22. Braeckmans, K. et al. Sizing nanomatter in biological fluids by fluorescence single particle tracking. Nano Lett. 10, 4435–4442 (2010).

  23. Chen, D., Ganesh, S., Wang, W. & Amiji, M. Plasma protein adsorption and biological identity of systemically administered nanoparticles. Nanomedicine 12, 2113–2135 (2017).

    CAS  Google Scholar 

  24. De Chermont, Q. L. M. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl Acad. Sci. USA 104, 9266–9271 (2007).

    Google Scholar 

  25. Smith, W. J. et al. Lipophilic indocarbocyanine conjugates for efficient incorporation of enzymes, antibodies and small molecules into biological membranes. Biomaterials 161, 57 (2018).

    CAS  Google Scholar 

  26. Hofkens, W., Storm, G., Van Den Berg, W. B. & Van Lent, P. L. Liposomal targeting of glucocorticoids to the inflamed synovium inhibits cartilage matrix destruction during murine antigen-induced arthritis. Int. J. Pharm. 416, 486–492 (2011).

    CAS  Google Scholar 

  27. Kratofil, R. M., Kubes, P. & Deniset, J. F. Monocyte conversion during inflammation and injury. Arterioscler. Thromb. Vasc. Biol. 37, 35–42 (2017).

    CAS  Google Scholar 

  28. Gschwandtner, M., Derler, R. & Midwood, K. S. More than just attractive: how CCL2 influences myeloid cell behavior beyond chemotaxis. Front. Immunol. 10, 2759 (2019).

    CAS  Google Scholar 

  29. Seeuws, S. et al. A multiparameter approach to monitor disease activity in collagen-induced arthritis. Arthritis Res. Ther. 12, R160 (2010).

    Google Scholar 

  30. Tu, J. et al. Ontogeny of synovial macrophages and the roles of synovial macrophages from different origins in arthritis. Front. Immunol. 10, 1146 (2019).

    CAS  Google Scholar 

  31. Hoeffel, G. et al. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. J. Exp. Med. 209, 1167–1181 (2012).

    CAS  Google Scholar 

  32. Inglis, J. J. et al. Collagen-induced arthritis in C57BL/6 mice is associated with a robust and sustained T-cell response to type II collagen. Arthritis Res. Ther. 9, R113 (2007).

    Google Scholar 

  33. Asquith, D. L., Miller, A. M., McInnes, I. B. & Liew, F. Y. Animal models of rheumatoid arthritis. Eur. J. Immunol. 39, 2040–2044 (2009).

    CAS  Google Scholar 

  34. Wipke, B. T. & Allen, P. M. Essential role of neutrophils in the initiation and progression of a murine model of rheumatoid arthritis. J. Immunol. 167, 1601–1608 (2001).

    CAS  Google Scholar 

  35. Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

  36. Kulkarni, J. A., Witzigmann, D., Chen, S., Cullis, P. R. & Van Der Meel, R. Lipid nanoparticle technology for clinical translation of siRNA therapeutics. Acc. Chem. Res. 52, 2435–2444 (2019).

    CAS  Google Scholar 

  37. Zhu, X. et al. Surface de-PEGylation controls nanoparticle-mediated siRNA delivery in vitro and in vivo. Theranostics 7, 1990–2002 (2017).

    CAS  Google Scholar 

  38. Cambré, I. et al. Mechanical strain determines the site-specific localization of inflammation and tissue damage in arthritis. Nat. Commun. 9, 4613 (2018).

    Google Scholar 

  39. Meghraoui-Kheddar, A., Barthelemy, S., Boissonnas, A. & Combadière, C. Revising CX3CR1 expression on murine classical and non-classical monocytes. Front. Immunol. 11, 1117 (2020).

    CAS  Google Scholar 

  40. Kinne, R. W. Macrophages in rheumatoid arthritis. Arthritis Res. Ther. 2, 189 (2000).

  41. Veiga, N. et al. Cell specific delivery of modified mRNA expressing therapeutic proteins to leukocytes. Nat. Commun. 9, 4493 (2018).

    Google Scholar 

  42. Wyatt Shields, C. et al. Cellular backpacks for macrophage immunotherapy. Sci. Adv. 6, eaaz6579 (2020).

    Google Scholar 

  43. Kumar, R. A., Li, Y., Dang, Q. & Yang, F. Monocytes in rheumatoid arthritis: circulating precursors of macrophages and osteoclasts and, their heterogeneity and plasticity role in RA pathogenesis. Int. Immunopharmacol. 65, 348–359 (2018).

    Google Scholar 

  44. Kim, J. & Sahay, G. Nanomedicine hitchhikes on neutrophils to the inflamed lung. Nat. Nanotechnol. 17, 1–2 (2021).

    Google Scholar 

  45. Palchetti, S. et al. The protein corona of circulating PEGylated liposomes. Biochim. Biophys. Acta Biomembr. 1858, 189–196 (2016).

    CAS  Google Scholar 

  46. Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Google Scholar 

  47. Francia, V., Schiffelers, R. M., Cullis, P. R. & Witzigmann, D. The biomolecular corona of lipid nanoparticles for gene therapy. Bioconjugate Chem. 31, 2046–2059 (2020).

    CAS  Google Scholar 

  48. Dale, D. C., Boxer, L., & Liles, W. C. The phagocytes: neutrophils and monocytes. Blood 112, 935–945 (2008).

    CAS  Google Scholar 

  49. Leuschner, F. et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat. Biotechnol. 29, 1005–1010 (2011).

    CAS  Google Scholar 

  50. Novobrantseva, T. I. et al. Systemic RNAi-mediated gene silencing in nonhuman primate and rodent myeloid cells. Mol. Ther. Nucleic Acids 1, e4 (2012).

    Google Scholar 

  51. Li, C. et al. Mechanisms of innate and adaptive immunity to the Pfizer-BioNTech BNT162b2 vaccine. Nat. Immunol. 23, 543–555 (2022).

    CAS  Google Scholar 

  52. Lenart, K. et al. A third dose of the unmodified COVID-19 mRNA vaccine CVnCoV enhances quality and quantity of immune responses. Mol. Ther. Methods Clin. Dev. 27, 309–323 (2022).

    CAS  Google Scholar 

  53. Jafarzadeh, A., Chauhan, P., Saha, B., Jafarzadeh, S. & Nemati, M. Contribution of monocytes and macrophages to the local tissue inflammation and cytokine storm in COVID-19: lessons from SARS and MERS, and potential therapeutic interventions. Life Sci. 257, 118102 (2020).

    CAS  Google Scholar 

  54. Martinez, F. O., Combes, T. W., Orsenigo, F. & Gordon, S. Monocyte activation in systemic Covid-19 infection: assay and rationale. eBioMedicine 59, 102964 (2020).

    CAS  Google Scholar 

  55. Zhang, D. et al. COVID‐19 infection induces readily detectable morphologic and inflammation‐related phenotypic changes in peripheral blood monocytes. J. Leukoc. Biol. 109, 13–22 (2020).

  56. Pence, B. D. Severe COVID-19 and aging: are monocytes the key? GeroScience 42, 1051–1061 (2020).

    CAS  Google Scholar 

  57. Ragab, D., Salah Eldin, H., Taeimah, M., Khattab, R. & Salem, R. The COVID-19 cytokine storm; what we know so far. Front. Immunol. 11, 1446 (2020).

    CAS  Google Scholar 

  58. Yoshimura, T. The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine 98, 71–78 (2017).

    CAS  Google Scholar 

  59. Parihar, A., Eubank, T. D. & Doseff, A. I. Monocytes and macrophages regulate immunity through dynamic networks of survival and cell death. J. Innate Immun. 2, 204–215 (2010).

    Google Scholar 

  60. Yang, J., Zhang, L., Yu, C., Yang, X. F. & Wang, H. Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomark. Res. 2, 1 (2014).

    Google Scholar 

  61. Lammers, T. et al. Dexamethasone nanomedicines for COVID-19. Nat. Nanotechnol. 15, 622–624 (2020).

    CAS  Google Scholar 

  62. Benchimol, M. J., Bourne, D., Moghimi, S. M. & Simberg, D. Pharmacokinetic analysis reveals limitations and opportunities for nanomedicine targeting of endothelial and extravascular compartments of tumors. J. Drug Target. 27, 690–698 (2019).

    Google Scholar 

  63. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  Google Scholar 

  64. Brocato, T. A. et al. Understanding the connection between nanoparticle uptake and cancer treatment efficacy using mathematical modeling. Sci. Rep. 8, 7538 (2018).

    Google Scholar 

  65. Avnir, Y. et al. Amphipathic weak acid glucocorticoid prodrugs remote-loaded into sterically stabilized nanoliposomes evaluated in arthritic rats and in a Beagle dog: a novel approach to treating autoimmune arthritis. Arthritis Rheum. 58, 119–129 (2008).

    CAS  Google Scholar 

  66. Avnir, Y. et al. Fabrication principles and their contribution to the superior in vivo therapeutic efficacy of nano-liposomes remote loaded with glucocorticoids. PLoS ONE 6, e25721 (2011).

    CAS  Google Scholar 

  67. Verbeke, R. et al. Broadening the message: a nanovaccine co-loaded with messenger RNA and α-GalCer induces antitumor immunity through conventional and natural killer T cells. ACS Nano 13, 1655–1669 (2019).

    CAS  Google Scholar 

  68. Kulkarni, J. A. et al. Fusion-dependent formation of lipid nanoparticles containing macromolecular payloads. Nanoscale 11, 9023–9031 (2019).

    CAS  Google Scholar 

  69. Kulkarni, J. A. et al. On the formation and morphology of lipid nanoparticles containing ionizable cationic lipids and siRNA. ACS Nano 12, 4787–4795 (2018).

    CAS  Google Scholar 

  70. Hirota, S., De Ilarduya, C. T., Barron, L. G. & Szoka, F. C. Simple mixing device to reproducibly prepare cationic lipid-DNA complexes (lipoplexes). Biotechniques 27, 286–290 (1999).

    CAS  Google Scholar 

  71. Kulkarni, J. A. et al. Rapid synthesis of lipid nanoparticles containing hydrophobic inorganic nanoparticles. Nanoscale 9, 13600–13609 (2017).

    CAS  Google Scholar 

  72. Kannan, K., Ortmann, R. A. & Kimpel, D. Animal models of rheumatoid arthritis and their relevance to human disease. Pathophysiology 12, 167–181 (2005).

    Google Scholar 

  73. Seemann, S., Zohles, F. & Lupp, A. Comprehensive comparison of three different animal models for systemic inflammation. J. Biomed. Sci. 24, 60 (2017).

    Google Scholar 

Download references

Acknowledgements

J.D. acknowledges funding from the Special Research Fund (BOF) from Ghent University (grant no. 01D30517). R.V., S.M. and I.A. acknowledge funding from the Research Foundation-Flanders (FWO-V) (grant nos. 1275023N, 1S73120N and 1S40923N, respectively). I.L. and S.C.D.S acknowledge the FWO-V (grant agreement no. G016221N). I.L. acknowledges financial support from the Ghent University Special Research Fund (UGent-BOF) for Concerted Research Actions (GOA). The work of R.v.d.M. is supported by the Netherlands Research Council (NWO: ZonMW Vici grant no. 016.176.622 to W. J. M. Mulder). D.E. acknowledges funding from the FWO-V (grant nos. 3G0C7719, 3G067219 and G082023N) and Stichting tegen Kanker (STI) (grant no. STI.STK.2023.0005.01). We thank B.D and C.V. from the pre-clinical core imaging facility Infinity Lab (UGent).

Author information

Authors and Affiliations

Authors

Contributions

I.L., D.E. and S.C.D.S. designed the project. J.D. was responsible for the protocols and project management. J.D., S.M. and I.A. carried out the liposome fabrication. J.D., R.V., S.M., I.A., H.D., T.D., J.C. and I.L. carried out the mice experiments. T.D. and J.C. were responsible for scoring, caretaking and harvesting the mice. J.D., R.V., S.M. and I.A. performed the IVIS imaging of the mice. J.V.D. and G.V.I. conducted the ImageStream experiments via the VIB Flow Core. J.D., I.L. and D.E. conceptualized the autologous transfusion experiment. J.D., D.P., S.M. and I.L. contributed to the conceptualization of the depletion experiment. J.D. analysed the data. R.v.d.M. helped with the fabrication and guidance of the mRNA LNPs. J.D., R.V. and I.L. wrote the manuscript with input from S.C.D.S, D.E., P.J. and R.v.d.M. All the authors contributed to the discussions and the final work.

Corresponding authors

Correspondence to Dirk Elewaut or Ine Lentacker.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Katharina Maisel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deprez, J., Verbeke, R., Meulewaeter, S. et al. Transport by circulating myeloid cells drives liposomal accumulation in inflamed synovium. Nat. Nanotechnol. 18, 1341–1350 (2023). https://doi.org/10.1038/s41565-023-01444-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01444-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research