Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces

Abstract

The Dirac-like dispersion in photonic systems makes it possible to mimic the dispersion of relativistic spin-1/2 particles, which led to the development of the concept of photonic topological insulators. Despite recent demonstrations of various topological photonic phases, the full potential offered by Dirac photonic systems, specifically their ability to emulate the spin degree of freedom—referred to as pseudo-spin—beyond topological boundary modes has remained underexplored. Here we demonstrate that photonic Dirac metasurfaces with smooth one-dimensional trapping gauge potentials serve as effective waveguides with modes carrying pseudo-spin. We show that spatially varying gauge potentials act unevenly on the two pseudo-spins due to their different field distributions, which enables control of guided modes by their spin, a property that is unattainable with conventional optical waveguides. Silicon nanophotonic metasurfaces are used to experimentally confirm the properties of these guided modes and reveal their distinct spin-dependent radiative character; modes of opposite pseudo-spin exhibit disparate radiative lifetimes and couple differently to incident light. The spin-dependent field distributions and radiative lifetimes of their guided modes indicate that photonic Dirac metasurfaces could be used for spin-multiplexing, controlling the characteristics of optical guided modes, and tuning light–matter interactions with photonic pseudo-spins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin-full guiding potentials generated by spatially variable mass terms.
Fig. 2: First-principles design of a spin-full waveguide and non-Hermitian spin Hall effect.
Fig. 3: Experimental results evidencing pseudo-spin-polarized transport and non-Hermitian spin Hall effect in the Dirac meta-waveguide.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Qiao, W. et al. Toward scalable flexible nanomanufacturing for photonic structures and devices. Adv. Mater. 28, 10353–10380 (2016).

    Article  CAS  Google Scholar 

  2. Li, C. et al. Dielectric metasurfaces: from wavefront shaping to quantum platforms. Prog. Surf. Sci. 95, 100584 (2020).

    Article  CAS  Google Scholar 

  3. Plotnik, Y. et al. Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater. 13, 57–62 (2014).

    Article  CAS  Google Scholar 

  4. Bliokh, K. Y. Weak antilocalization of ultrarelativistic fermions. Phys. Lett. A 344, 127–130 (2005).

    Article  CAS  Google Scholar 

  5. Morozov, S. V. et al. Strong suppression of weak localization in graphene. Phys. Rev. Lett. 97, 016801 (2006).

    Article  CAS  Google Scholar 

  6. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    Article  CAS  Google Scholar 

  7. Wang, Z., Chong, Y., Joannopoulos, J. D. & Soljačić, M. Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009).

    Article  CAS  Google Scholar 

  8. Hafezi, M., Demler, E. A., Lukin, M. D. & Taylor, J. M. Robust optical delay lines with topological protection. Nat. Phys. 7, 907–912 (2011).

    Article  CAS  Google Scholar 

  9. Cheng, X. et al. Robust reconfigurable electromagnetic pathways within a photonic topological insulator. Nat. Mater. 15, 542–548 (2016).

    Article  CAS  Google Scholar 

  10. Khanikaev, A. B. & Shvets, G. Two-dimensional topological photonics. Nat. Photonics 11, 763–773 (2017).

    Article  CAS  Google Scholar 

  11. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  CAS  Google Scholar 

  12. Slobozhanyuk, A. et al. Three-dimensional all-dielectric photonic topological insulator. Nat. Photonics 11, 130–136 (2017).

    Article  CAS  Google Scholar 

  13. Yang, Y. et al. Realization of a three-dimensional photonic topological insulator. Nature 565, 622–626 (2019).

    Article  CAS  Google Scholar 

  14. Szameit, A., Rechtsman, M. C., Bahat-Treidel, O. & Segev, M. PT-symmetry in honeycomb photonic lattices. Phys. Rev. A 84, 021806R (2011).

    Article  Google Scholar 

  15. Zhen, B. et al. Spawning rings of exceptional points out of Dirac cones. Nature 525, 354–358 (2015).

    Article  CAS  Google Scholar 

  16. Leykam, D., Bliokh, K. Y., Huang, C., Chong, Y. D. & Nori, F. Edge modes, degeneracies, and topological numbers in non-Hermitian systems. Phys. Rev. Lett. 118, 040401 (2017).

    Article  Google Scholar 

  17. Liu, T. et al. Second-order topological phases in non-Hermitian systems. Phys. Rev. Lett. 122, 076801 (2019).

    Article  CAS  Google Scholar 

  18. Liu, Y. G. N., Jung, P. S., Parto, M., Christodoulides, D. N. & Khajavikhan, M. Gain-induced topological response via tailored long-range interactions. Nat. Phys. 17, 704–709 (2021).

    Article  CAS  Google Scholar 

  19. Xia, S. et al. Nonlinear tuning of PT symmetry and non-Hermitian topological states. Science 372, 72–76 (2021).

    Article  CAS  Google Scholar 

  20. Parto, M., Liu, Y. G. N., Bahari, B., Khajavikhan, M. & Christodoulides, D. N. Non-Hermitian and topological photonics: optics at an exceptional point. Nanophotonics 10, 403–423 (2020).

    Article  Google Scholar 

  21. Lumer, Y., Plotnik, Y., Rechtsman, M. C. & Segev, M. Self-localized states in photonic topological insulators. Phys. Rev. Lett. 111, 243905 (2013).

    Article  Google Scholar 

  22. Hadad, Y., Khanikaev, A. B. & Alù, A. Self-induced topological transitions and edge states supported by nonlinear staggered potentials. Phys. Rev. B 93, 55112 (2016).

    Article  Google Scholar 

  23. Leykam, D. & Chong, Y. D. Edge solitons in nonlinear-photonic topological insulators. Phys. Rev. Lett. 117, 143901 (2016).

    Article  Google Scholar 

  24. Hadad, Y., Soric, J. C., Khanikaev, A. B. & Alú, A. Self-induced topological protection in nonlinear circuit arrays. Nat. Electron. 1, 178–182 (2018).

    Article  Google Scholar 

  25. D’Aguanno, G. et al. Nonlinear topological transitions over a metasurface. Phys. Rev. B 100, 214310 (2019).

    Article  Google Scholar 

  26. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  CAS  Google Scholar 

  27. Maczewsky, L. J. et al. Nonlinearity-induced photonic topological insulator. Science 370, 701–704 (2020).

    Article  CAS  Google Scholar 

  28. Gao, F. et al. Topologically protected refraction of robust kink states in valley photonic crystals. Nat. Phys. 14, 140–144 (2018).

    Article  CAS  Google Scholar 

  29. Liu, J. W. et al. Valley photonic crystals. Adv. Phys. X 6, 1905546 (2021).

    Google Scholar 

  30. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  CAS  Google Scholar 

  31. Raghu, S. & Haldane, F. D. M. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78, 033834 (2008).

    Article  Google Scholar 

  32. Rechtsman, M. C. et al. Photonic Floquet topological insulators. Nature 496, 196–200 (2013).

    Article  CAS  Google Scholar 

  33. Khanikaev, A. B. et al. Photonic topological insulators. Nat. Mater. 12, 233–239 (2013).

    Article  CAS  Google Scholar 

  34. Silveirinha, M. G. Bulk-edge correspondence for topological photonic continua. Phys. Rev. B 94, 205105 (2016).

    Article  Google Scholar 

  35. Bisharat, D. J. & Sievenpiper, D. F. Electromagnetic-dual metasurfaces for topological states along a 1D interface. Laser Photonics Rev. 13, 1900126 (2019).

    Article  CAS  Google Scholar 

  36. Wu, L. H. & Hu, X. Scheme for achieving a topological photonic crystal by using dielectric material. Phys. Rev. Lett. 114, 223901 (2015).

    Article  Google Scholar 

  37. Barik, S., Miyake, H., Degottardi, W., Waks, E. & Hafezi, M. Two-dimensionally confined topological edge states in photonic crystals. New J. Phys. 18, 113013 (2016).

    Article  Google Scholar 

  38. Barik, S. et al. A topological quantum optics interface. Science 359, 666–668 (2018).

    Article  CAS  Google Scholar 

  39. Gorlach, M. A. et al. Far-field probing of leaky topological states in all-dielectric metasurfaces. Nat. Commun. 9, 909 (2018).

    Article  Google Scholar 

  40. Mei, J., Chen, Z. & Wu, Y. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals. Sci. Rep. 6, 32752 (2016).

    Article  CAS  Google Scholar 

  41. Smirnova, D. et al. Third-harmonic generation in photonic topological metasurfaces. Phys. Rev. Lett. 123, 103901 (2019).

    Article  CAS  Google Scholar 

  42. Tworzydło, J., Groth, C. W. & Beenakker, C. W. J. Finite difference method for transport properties of massless Dirac fermions. Phys. Rev. B 78, 235438 (2008).

    Article  Google Scholar 

  43. Hernández, A. R. & Lewenkopf, C. H. Finite-difference method for transport of two-dimensional massless Dirac fermions in a ribbon geometry. Phys. Rev. B 86, 155439 (2012).

    Article  Google Scholar 

  44. Landau, L. D. and Lifschitz, E. M. Quantum Mechanics: Non-relativistic Theory (Pergamon, 1977).

  45. Parappurath, N., Alpeggiani, F., Kuipers, L. & Verhagen, E. Direct observation of topological edge states in silicon photonic crystals: spin, dispersion, and chiral routing. Sci. Adv. 6, eaaw4137 (2020).

    Article  CAS  Google Scholar 

  46. Liu, W. et al. Generation of helical topological exciton–polaritons. Science 370, 600–604 (2020).

    Article  CAS  Google Scholar 

  47. Li, M. et al. Experimental observation of topological Z2 exciton–polaritons in transition metal dichalcogenide monolayers. Nat. Commun. 12, 4425 (2021).

    Article  CAS  Google Scholar 

  48. Guddala, S. et al. Topological phonon–polariton funneling in midinfrared metasurfaces. Science 374, 225–227 (2021).

    Article  CAS  Google Scholar 

  49. Bliokh, K. Y., Dressel, J. & Nori, F. Conservation of the spin and orbital angular momenta in electromagnetism. New J. Phys. 16, 093037 (2014).

    Article  Google Scholar 

  50. Bliokh, K. Y. et al. Spin-to-orbital angular momentum conversion in focusing, scattering, and imaging systems. Opt. Express 19, 26132 (2011).

    Article  Google Scholar 

  51. De Paz, M. B., Vergniory, M. G., Bercioux, D., Garciá-Etxarri, A. & Bradlyn, B. Engineering fragile topology in photonic crystals: topological quantum chemistry of light. Phys. Rev. Res. 1, 032005 (2019).

    Article  Google Scholar 

  52. De Paz, M. B. et al. Energy density as a probe of band representations in photonic crystals. J. Phys. Condens. Matter 34, 314002 (2022).

    Article  Google Scholar 

  53. Xiao, B. et al. Exciting reflectionless unidirectional edge modes in a reciprocal photonic topological insulator medium. Phys. Rev. B 94, 195427 (2016).

    Article  Google Scholar 

  54. Slobozhanyuk, A. et al. Near-field imaging of spin-locked edge states in all-dielectric topological metasurfaces. Appl. Phys. Lett. 114, 031103 (2019).

    Article  Google Scholar 

  55. Li, Y. et al. Mode-selective single-dipole excitation and controlled routing of guided waves in a multi-mode topological waveguide. Appl. Phys. Lett. 120, 221702 (2022).

    Article  CAS  Google Scholar 

  56. Shalaev, M. I., Walasik, W., Tsukernik, A., Xu, Y. & Litchinitser, N. M. Robust topologically protected transport in photonic crystals at telecommunication wavelengths. Nat. Nanotechnol. 14, 31–34 (2019).

    Article  CAS  Google Scholar 

  57. Collins, M. J., Zhang, F., Bojko, R., Chrostowski, L. & Rechtsman, M. C. Integrated optical Dirac physics via inversion symmetry breaking. Phys. Rev. A 94, 063827 (2016).

    Article  Google Scholar 

  58. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Office of Naval Research (ONR) award N00014-21-1-2092 (A.B.K.), the National Science Foundation (NSF) grant DMR-1809915 (A.B.K.) and the Simons Collaboration on Extreme Wave Phenomena (A.B.K.). D.S. acknowledges support from the Australian Research Council (DE190100430). J.A. and M.A. thank AFRL/RW Emerging Technologies for their support. Fabrication of samples for this work was performed at the Nanofabrication Facility at the Advanced Science Research Center at The Graduate Center of the City University of New York.

Author information

Authors and Affiliations

Authors

Contributions

A.B.K. conceived the research. D.S. performed theoretical calculations. S.K. and A.V. performed first-principles simulations, fabrication of samples and optical characterization, including real-space imaging and angle-resolved reflectivity measurements. A.V., S.G. and F.K. assembled the experimental set-up. A.B.K., M.A. and J.A. guided and supervised the project. All authors contributed to discussion of the results and manuscript preparation.

Corresponding author

Correspondence to Alexander B. Khanikaev.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Baile Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary text, Figs. 1–4 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiriushechkina, S., Vakulenko, A., Smirnova, D. et al. Spin-dependent properties of optical modes guided by adiabatic trapping potentials in photonic Dirac metasurfaces. Nat. Nanotechnol. 18, 875–881 (2023). https://doi.org/10.1038/s41565-023-01380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01380-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing