Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Neutrophil hitchhiking for drug delivery to the bone marrow

Abstract

Pharmaceuticals have been developed for the treatment of a wide range of bone diseases and disorders, but suffer from problematic delivery to the bone marrow. Neutrophils are naturally trafficked to the bone marrow and can cross the bone marrow–blood barrier. Here we report the use of neutrophils for the targeted delivery of free drugs and drug nanoparticles to the bone marrow. We demonstrate how drug-loaded poly(lactic-co-glycolic acid) nanoparticles are taken up by neutrophils and are then transported across the bone marrow–blood barrier to boost drug concentrations in the bone marrow. We demonstrate application of this principle to two models. In a bone metastasis cancer model, neutrophil delivery is shown to deliver cabazitaxel and significantly inhibit tumour growth. In an induced osteoporosis model, neutrophil delivery of teriparatide is shown to significantly increase bone mineral density and alleviate osteoporosis indicators.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neutrophil-based bone-marrow-targeted drug-delivery system actively delivers drugs into the bone marrow.
Fig. 2: Characterization of CTX-NPs and CTX-NPs@NEs.
Fig. 3: Biodistribution of NEs and NPs@NEs.
Fig. 4: Anti-tumour effect of CTX-NPs@NEs on bone metastasis of breast cancer.
Fig. 5: Impact of PTH-NPs@NEs on osteoporosis.
Fig. 6: Toxicity of the neutrophil-based bone-marrow-targeted drug-delivery system.

Similar content being viewed by others

Data availability

Data supporting the findings of this study are available within the Article and its Supplementary Information. All relevant data can be made available upon reasonable request to the corresponding authors. Source data are provided with this paper.

References

  1. Rodan Gideon, A. & Martin, T. J. Therapeutic approaches to bone diseases. Science 289, 1508–1514 (2000).

    Article  Google Scholar 

  2. Chaudhari, K. R. et al. Bone metastasis targeting: a novel approach to reach bone using Zoledronate anchored PLGA nanoparticle as carrier system loaded with Docetaxel. J. Control. Release 158, 470–478 (2012).

    Article  Google Scholar 

  3. Tavassoli, M. The marrow–blood barrier. Br. J. Haematol. 41, 297–302 (1979).

    Article  CAS  Google Scholar 

  4. Adjei, I. M., Sharma, B., Peetla, C. & Labhasetwar, V. Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer. J. Control. Release 232, 83–92 (2016).

    Article  CAS  Google Scholar 

  5. Sun, W. et al. Bone-targeted nanoplatform combining zoledronate and photothermal therapy to treat breast cancer bone metastasis. ACS Nano 13, 7556–7567 (2019).

    Article  CAS  Google Scholar 

  6. Chen, Q. et al. Bone targeted delivery of SDF-1 via alendronate functionalized nanoparticles in guiding stem cell migration. ACS Appl. Mater. Interfaces 10, 23700–23710 (2018).

    Article  CAS  Google Scholar 

  7. Mann, A. P. et al. E-selectin-targeted porous silicon particle for nanoparticle delivery to the bone marrow. Adv. Mater. 23, H278–H282 (2011).

    Article  CAS  Google Scholar 

  8. Wang, H. et al. Tetracycline-grafted PLGA nanoparticles as bone-targeting drug delivery system. Int. J. Nanomed. 10, 5671–5685 (2015).

    CAS  Google Scholar 

  9. Aoki, K., Alles, N., Soysa, N. & Ohya, K. Peptide-based delivery to bone. Adv. Drug Deliv. Rev. 64, 1220–1238 (2012).

    Article  CAS  Google Scholar 

  10. Lavrador, P., Gaspar, V. M. & Mano, J. F. Stimuli-responsive nanocarriers for delivery of bone therapeutics – barriers and progresses. J. Control. Release 273, 51–67 (2018).

    Article  CAS  Google Scholar 

  11. Lahoz-Beneytez, J. et al. Human neutrophil kinetics: modeling of stable isotope labeling data supports short blood neutrophil half-lives. Blood 127, 3431–3438 (2016).

    Article  CAS  Google Scholar 

  12. Theilgaard-Mönch, K. et al. The transcriptional program of terminal granulocytic differentiation. Blood 105, 1785–1796 (2005).

    Article  Google Scholar 

  13. Martin, C. et al. Chemokines acting via CXCR2 and CXCR4 control the release of neutrophils from the bone marrow and their return following senescence. Immunity 19, 583–593 (2003).

    Article  CAS  Google Scholar 

  14. Cacalano, G. et al. Neutrophil and B cell expansion in mice that lack the murine IL-8 receptor homolog. Science 265, 682–684 (1994).

    Article  CAS  Google Scholar 

  15. Eash, K. J., Greenbaum, A. M., Gopalan, P. K. & Link, D. C. CXCR2 and CXCR4 antagonistically regulate neutrophil trafficking from murine bone marrow. J. Clin. Invest. 120, 2423–2431 (2010).

    Article  CAS  Google Scholar 

  16. Lawrence, S. M., Corriden, R. & Nizet, V. How neutrophils meet their end. Trends Immunol. 41, 531–544 (2020).

    Article  CAS  Google Scholar 

  17. Borregaard, N. Neutrophils, from marrow to microbes. Immunity 33, 657–670 (2010).

    Article  CAS  Google Scholar 

  18. Wang, J. et al. Visualizing the function and fate of neutrophils in sterile injury and repair. Science 358, 111–116 (2017).

    Article  CAS  Google Scholar 

  19. Garner, H. & de Visser, K. E. Neutrophils take a round-trip. Science 358, 42–43 (2017).

    Article  CAS  Google Scholar 

  20. Furze, R. C. & Rankin, S. M. Neutrophil mobilization and clearance in the bone marrow. Immunology 125, 281–288 (2008).

    Article  CAS  Google Scholar 

  21. Suratt, B. T. et al. Neutrophil maturation and activation determine anatomic site of clearance from circulation. Am. J. Physiol. Lung Cell. Mol. Physiol. 281, L913–L921 (2001).

    Article  CAS  Google Scholar 

  22. Løvås, K., Knudsen, E., Iversen, P. O. & Benestad, H. B. Sequestration patterns of transfused rat neutrophilic granulocytes under normal and inflammatory conditions. Eur. J. Haematol. 56, 221–229 (1996).

    Article  Google Scholar 

  23. Hofman, M. S. et al. 177Lu-PSMA-617 versus cabazitaxel in patients with metastatic castration-resistant prostate cancer (TheraP): a randomised, open-label, phase 2 trial. Lancet 397, 797–804 (2021).

    Article  CAS  Google Scholar 

  24. Wang, J. et al. ROS-responsive nanocomplex of aPD-L1 and cabazitaxel improves intratumor delivery and potentiates radiation-mediated antitumor immunity. Nano Lett. 22, 8312–8320 (2022).

    Article  Google Scholar 

  25. Blick, S. K. A., Dhillon, S. & Keam, S. J. Teriparatide. Drugs 68, 2709–2737 (2008).

    Article  CAS  Google Scholar 

  26. Xue, J. et al. Neutrophil-mediated anticancer drug delivery for suppression of postoperative malignant glioma recurrence. Nat. Nanotechnol. 12, 692–700 (2017).

    Article  CAS  Google Scholar 

  27. Schwartz, R. S. & Erban, J. K. Timing of metastasis in breast cancer. N. Engl. J. Med. 376, 2486–2488 (2017).

    Article  Google Scholar 

  28. Cai, W.-L. et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol. Cancer 17, 9 (2018).

    Article  Google Scholar 

  29. Taguchi, T. SY7-2 - treatment strategy of bone metastasis in breast cancer. Ann. Oncol. 28, ix33 (2017).

    Article  Google Scholar 

  30. Parveen, S. et al. Therapeutic targeting with DABIL-4 depletes myeloid suppressor cells in 4T1 triple-negative breast cancer model. Mol. Oncol. 15, 1330–1344 (2021).

    Article  CAS  Google Scholar 

  31. Balog, J. et al. Single cell mass cytometry revealed the immunomodulatory effect of cisplatin via downregulation of splenic CD44+, IL-17A+ MDSCs and promotion of circulating IFN-γ myeloid cells in the 4T1 metastatic breast cancer model. Int. J. Mol. Sci. 21, 170 (2019).

    Article  Google Scholar 

  32. DuPre, S. A. & Hunter, K. W. Jr Murine mammary carcinoma 4T1 induces a leukemoid reaction with splenomegaly: association with tumor-derived growth factors. Exp. Mol. Pathol. 82, 12–24 (2007).

    Article  CAS  Google Scholar 

  33. Yun, H. M. et al. 2,4,5-Trimethoxyldalbergiquinol promotes osteoblastic differentiation and mineralization via the BMP and Wnt/β-catenin pathway. Cell Death Dis. 6, e1819 (2015).

    Article  CAS  Google Scholar 

  34. Al Rifai, O. et al. Proprotein convertase furin regulates osteocalcin and bone endocrine function. J. Clin. Invest. 127, 4104–4117 (2017).

    Article  Google Scholar 

  35. Yeom, J., Ma, S. & Lim, Y.-H. Probiotic Propionibacterium freudenreichii MJ2 enhances osteoblast differentiation and mineralization by increasing the OPG/RANKL ratio. Microorganisms 9, 673 (2021).

    Article  CAS  Google Scholar 

  36. An, J. M. et al. Oral delivery of parathyroid hormone using a triple-padlock nanocarrier for osteoporosis via an enterohepatic circulation pathway. ACS Appl. Mater. Interfaces 13, 23314–23327 (2021).

    Article  CAS  Google Scholar 

  37. Bain, B. J. & England, J. M. Normal haematological values: sex difference in neutrophil count. Br. Med. J. 1, 306–309 (1975).

    Article  CAS  Google Scholar 

  38. Wright, L. E. et al. Murine models of breast cancer bone metastasis. Bonekey Rep. 5, 804–804 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (81973246 (J.Y.) and 82003667 (L.L.)). We thank J. Wang from the Core Facilities, Zhejiang University School of Medicine, X. Zhang from the Analysis Center of Agrobiology and Environmental Sciences and Institute of Agrobiology and Environmental Sciences, Zhejiang University, and G. Wang from the radiology department, the First Affiliated Hospital, Zhejiang University School of Medicine for technical support. We thank Servier Medical Art for support with figure drawing.

Author information

Authors and Affiliations

Authors

Contributions

Z.L., L.L. and J.Y. designed the experiments, analysed the data and wrote the paper. Z.L. performed most of the experiments. Y.Lu., X.S., X.G. and Y.Liu assisted with animal experiments. Y.S., X.Li. and B.Q. assisted with cellular experiments. J.Z. and X.Liu. helped with data analysis. M.J., J.H. and S.W. revised the manuscript. Q.L., J.Y. and L.L. supervised the project.

Corresponding authors

Correspondence to Qingpo Li, Lihua Luo or Jian You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Michael Mitchell and Sara Rankin for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14.

Reporting Summary

Supplementary Video 1

PET/CT video of Free FDG at 2 h.

Supplementary Video 2

PET/CT video of Free FDG at 6 h.

Supplementary Video 3

PET/CT video of NEs (age: 6 h) at 2 h.

Supplementary Video 4

PET/CT video of NEs (age: 6 h) at 6 h.

Supplementary Video 5

PET/CT video of NEs (age: 24 h) at 2 h.

Supplementary Video 6

PET/CT video of NEs (age: 24 h) at 6 h.

Source data

Source Data Fig. 2

Main Fig. 2 statistical source data.

Source Data Fig. 3

Main Fig. 3 statistical source data.

Source Data Fig. 4

Main Fig. 4 statistical source data.

Source Data Fig. 5

Main Fig. 5 statistical source data.

Source Data Fig. 6

Main Fig. 6 statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Lu, Y., Shi, Y. et al. Neutrophil hitchhiking for drug delivery to the bone marrow. Nat. Nanotechnol. 18, 647–656 (2023). https://doi.org/10.1038/s41565-023-01374-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01374-7

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research