Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale

Abstract

Two-dimensional (2D) semiconductors such as molybdenum disulfide (MoS2) have attracted tremendous interest for transistor applications. However, the fabrication of 2D transistors using traditional lithography or deposition processes often causes undesired damage and contamination to the atomically thin lattices, partially degrading the device performance and leading to large variation between devices. Here we demonstrate a highly reproducible van der Waals integration process for wafer-scale fabrication of high-performance transistors and logic circuits from monolayer MoS2 grown by chemical vapour deposition. By designing a quartz/polydimethylsiloxane semirigid stamp and adapting a standard photolithography mask-aligner for the van der Waals integration process, our strategy ensures a uniform mechanical force and a bubble-free wrinkle-free interface during the pickup/release process, which is crucial for robust van der Waals integration over a large area. Our scalable van der Waals integration process allows damage-free integration of high-quality contacts on monolayer MoS2 at the wafer scale and enables high-performance 2D transistors. The van-der-Waals-contacted devices display an atomically clean interface with much smaller threshold variation, higher on-current, smaller off-current, larger on/off ratio and smaller subthreshold swing than those fabricated with conventional lithography. The approach is further used to create various logic gates and circuits, including inverters with a voltage gain of up to 585, and logic OR gates, NAND gates, AND gates and half-adder circuits. This scalable van der Waals integration method may be useful for reliable integration of 2D semiconductors with mature industry technology, facilitating the technological transition of 2D semiconductor electronics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Wafer-scale vdW integration.
Fig. 2: Alignment offset in large-scale vdW integration.
Fig. 3: Electronic properties of large-area vdW-integrated monolayer MoS2 FETs with Ag/Au contacts.
Fig. 4: Monolayer-MoS2-based inverter with vdW contacts.
Fig. 5: The vdW integration MoS2 logic gates and half-adder.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within the paper and the Supplementary Information. Other relevant data are available from the corresponding authors on reasonable request. Source data are provided with this paper.

References

  1. Sangwan, V. K. et al. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015).

    Article  CAS  Google Scholar 

  2. Sangwan, V. K. et al. Multi-terminal memtransistors from polycrystalline monolayer molybdenum disulfide. Nature 554, 500–504 (2018).

    Article  CAS  Google Scholar 

  3. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  CAS  Google Scholar 

  4. Chhowalla, M., Jena, D. & Zhang, H. Two-dimensional semiconductors for transistors. Nat. Rev. Mater. 1, 16052 (2016).

    Article  CAS  Google Scholar 

  5. Liu, C. S. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    Article  CAS  Google Scholar 

  6. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  CAS  Google Scholar 

  7. Zhou, J. D. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  Google Scholar 

  8. Li, W. S. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    Article  CAS  Google Scholar 

  9. Duan, X. D., Wang, C., Pan, A. L., Yu, R. Q. & Duan, X. F. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015).

    Article  CAS  Google Scholar 

  10. Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    Article  CAS  Google Scholar 

  11. Yu, H. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 11, 12001–12007 (2017).

    Article  CAS  Google Scholar 

  12. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    Article  CAS  Google Scholar 

  13. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    Article  CAS  Google Scholar 

  14. Asselberghs, I. et al. Wafer-scale integration of double gated WS2-transistors in 300 mm Si CMOS fab. In 2020 IEEE International Electron Devices Meeting 893–896 (IEEE, 2020).

  15. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  16. Zheng, X. R. et al. Patterning metal contacts on monolayer MoS2 with vanishing Schottky barriers using thermal nanolithography. Nat. Electron. 2, 17–25 (2019).

    Article  CAS  Google Scholar 

  17. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  CAS  Google Scholar 

  18. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Article  CAS  Google Scholar 

  19. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    Article  CAS  Google Scholar 

  20. Liu, Y., Huang, Y. & Duan, X. F. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  CAS  Google Scholar 

  21. Liu, G. Y. et al. Graphene-assisted metal transfer printing for wafer-scale integration of metal electrodes and two-dimensional materials. Nat. Electron. 5, 275–280 (2022).

    Article  CAS  Google Scholar 

  22. Cui, X. et al. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10, 534–540 (2015).

    Article  CAS  Google Scholar 

  23. Chuang, H. J. et al. Low-resistance 2D/2D ohmic contacts: a universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 16, 1896–1902 (2016).

    Article  CAS  Google Scholar 

  24. Wu, R. X. et al. Van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Article  Google Scholar 

  25. Leong, W. S. et al. Low resistance metal contacts to MoS2 devices with nickel-etched-graphene electrodes. ACS Nano 9, 869–877 (2015).

    Article  CAS  Google Scholar 

  26. Liu, Y. et al. Pushing the performance limit of sub-100 nm molybdenum disulfide transistors. Nano Lett. 16, 6337–6342 (2016).

    Article  CAS  Google Scholar 

  27. Wang, Y. L. et al. Probing photoelectrical transport in lead halide perovskites with van der Waals contacts. Nat. Nanotechnol. 15, 768–775 (2020).

    Article  CAS  Google Scholar 

  28. Wang, J. L. et al. Low-power complementary inverter with negative capacitance 2D semiconductor transistors. Adv. Funct. Mater. 30, 2003859 (2020).

    Article  CAS  Google Scholar 

  29. Ngo, T. D. et al. Fermi-level pinning free high-performance 2D CMOS inverter fabricated with van der Waals bottom contacts. Adv. Electron. Mater. 7, 2001212 (2021).

    Article  CAS  Google Scholar 

  30. Purdie, D. G. et al. Cleaning interfaces in layered materials heterostructures. Nat. Commun. 9, 5387 (2018).

    Article  CAS  Google Scholar 

  31. Guo, T. et al. Van der Waals integration of AZO/MoS2 ohmic junctions toward high-performance transparent 2D electronics. J. Mater. Chem. C 8, 9960–9967 (2020).

    Article  CAS  Google Scholar 

  32. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  Google Scholar 

  33. Kong, L. A. et al. Doping-free complementary WSe2 circuit via van der Waals metal integration. Nat. Commun. 11, 1866 (2020).

    Article  CAS  Google Scholar 

  34. Liu, L. T. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021).

    Article  CAS  Google Scholar 

  35. Carlson, A., Bowen, A. M., Huang, Y. G., Nuzzo, R. G. & Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284–5318 (2012).

    Article  CAS  Google Scholar 

  36. Linghu, C. H., Zhang, S., Wang, C. J. & Song, J. Z. Transfer printing techniques for flexible and stretchable inorganic electronics. npj Flex. Electron. 2, 26 (2018).

    Article  Google Scholar 

  37. Mannix, A. J. et al. Robotic four-dimensional pixel assembly of van der Waals solids. Nat. Nanotechnol. 17, 361–366 (2022).

    Article  CAS  Google Scholar 

  38. Huang, J. K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    Article  CAS  Google Scholar 

  39. Popov, I., Seifert, G. & Tomanek, D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys. Rev. Lett. 108, 156802 (2012).

    Article  Google Scholar 

  40. Chuang, S. et al. MoS2 p-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett. 14, 1337–1342 (2014).

    Article  CAS  Google Scholar 

  41. Li, N. et al. Atomic layer deposition of Al2O3 Directly on 2D materials for high-performance electronics. Adv. Mater. Interfaces 6, 1802055 (2019).

    Article  Google Scholar 

  42. Wang, H. et al. Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition. In 2012 IEEE International Electron Devices Meeting 88–91 (IEEE, 2012).

  43. Yu, L. et al. Enhancement-mode single-layer CVD MoS2 FET technology for digital electronics. In 2015 IEEE International Electron Devices Meeting 835–838 (IEEE, 2015).

  44. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    Article  CAS  Google Scholar 

  45. Wang, L. et al. Electronic devices and circuits based on wafer-scale polycrystalline monolayer MoS2 by chemical vapor deposition. Adv. Electron. Mater. 5, 1900393 (2019).

    Article  Google Scholar 

  46. Radisavljevic, B., Whitwick, M. B. & Kis, A. Integrated circuits and logic operations based on single-layer MoS2. ACS Nano 5, 9934–9938 (2011).

    Article  CAS  Google Scholar 

  47. Amani, M., Burke, R. A., Proie, R. M. & Dubey, M. Flexible integrated circuits and multifunctional electronics based on single atomic layers of MoS2 and graphene. Nanotechnology 26, 115202 (2015).

    Article  Google Scholar 

  48. Huang, J.-K. et al. Large-area synthesis of highly crystalline WSe2 monolayers and device applications. ACS Nano 8, 923–930 (2014).

    Article  CAS  Google Scholar 

  49. Song, H. S. et al. High-performance top-gated monolayer SnS2 field-effect transistors and their integrated logic circuits. Nanoscale 5, 9666–9670 (2013).

    Article  CAS  Google Scholar 

  50. Zhao, M. V. et al. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11, 954–959 (2016).

    Article  CAS  Google Scholar 

  51. Yu, L. L. et al. Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. Nano Lett. 14, 3055–3063 (2014).

    Article  CAS  Google Scholar 

  52. Pu, J. et al. Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers. Adv. Mater. 28, 4111–4119 (2016).

    Article  CAS  Google Scholar 

  53. Das, T. et al. Highly fexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide. Small 12, 5720–5727 (2016).

    Article  CAS  Google Scholar 

  54. Yeh, C. H. et al. Graphene-transition metal dichalcogenide heterojunctions for scalable and low-power complementary integrated circuits. ACS Nano 14, 985–992 (2020).

    Article  CAS  Google Scholar 

  55. Duan, X. D. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9, 1024–1030 (2014).

    Article  CAS  Google Scholar 

  56. Wang, H. et al. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 12, 4674–4680 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We at Hunan University acknowledge the support from the National Natural Science Foundation of China (grant nos. 51802090, 51872086, 51991341, 52102168, 61874041, 61925403), the Innovative Research Groups of Hunan Province (grant no. 2020JJ1001), the Hunan Key Laboratory of Two-Dimensional Materials (grant no. 2018TP1010) and the National Key R&D Program of China (grant no. 2021YFA1200503). The author at Ningbo University of Technology acknowledges the support from the Scientific Research Starting Foundation of Ningbo University of Technology (grant no. 2022KQ37).

Author information

Authors and Affiliations

Authors

Contributions

Xidong Duan and Y.L. conceived and supervised the project. X.Y. designed the experiments. J.L. and R.S. performed the growth of the 2 inch MoS2 wafers with help from B.Z. and Z.Z.; X.Y. fabricated and measured the devices with help from J.T., L.K., H.H., L.L. and Y.L.; X.Y., J.L., H.H., Y.L. Xidong Duan and Xiangfeng Duan contributed to the data analysis and discussions of the results. X.Y., J.L., Xidong Duan, Y.L. and Xiangfeng Duan cowrote the manuscript, and all authors commented on the manuscript.

Corresponding authors

Correspondence to Yuan Liu or Xidong Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Won Jong Yoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figs. 1–9 and text.

Supplementary video 1. The formation process of the bubble-free and wrinkle-free PDMS/PMMA interface.

Source data

Source Data Fig. 2

Statistical source data of Fig. 2.

Source Data Fig. 3

Statistical source data of Fig. 3.

Source Data Fig. 4

Statistical source data of Fig. 4.

Source Data Fig. 5

Statistical source data of Fig. 5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Li, J., Song, R. et al. Highly reproducible van der Waals integration of two-dimensional electronics on the wafer scale. Nat. Nanotechnol. 18, 471–478 (2023). https://doi.org/10.1038/s41565-023-01342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01342-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing