Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Strong coupling between a photon and a hole spin in silicon

Abstract

Spins in semiconductor quantum dots constitute a promising platform for scalable quantum information processing. Coupling them strongly to the photonic modes of superconducting microwave resonators would enable fast non-demolition readout and long-range, on-chip connectivity, well beyond nearest-neighbour quantum interactions. Here we demonstrate strong coupling between a microwave photon in a superconducting resonator and a hole spin in a silicon-based double quantum dot issued from a foundry-compatible metal–oxide–semiconductor fabrication process. By leveraging the strong spin–orbit interaction intrinsically present in the valence band of silicon, we achieve a spin–photon coupling rate as high as 330 MHz, largely exceeding the combined spin–photon decoherence rate. This result, together with the recently demonstrated long coherence of hole spins in silicon, opens a new realistic pathway to the development of circuit quantum electrodynamics with spins in semiconductor quantum dots.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Silicon MOS device, superconducting circuitry and DQD charge properties.
Fig. 2: Strong spin–photon coupling.
Fig. 3: Spin–photon coupling versus magnetic-field orientation.
Fig. 4: Spin–photon coupling in the single-dot limit.

Similar content being viewed by others

Data availability

The datasets generated during the current study are available via Zenodo at https://doi.org/10.5281/zenodo.7533669.

Code availability

The code used to analyse the datasets are available via Zenodo at https://doi.org/10.5281/zenodo.7533669.

References

  1. Haroche, S. and Raimond, J.-M. Exploring the Quantum: Atoms, Cavities, and Photons (Oxford Univ. Press, 2006).

  2. Wallraff, A. et al. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature 431, 162–167 (2004).

    Article  Google Scholar 

  3. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity quantum electrodynamics for superconducting electrical circuits: an architecture for quantum computation. Phys. Rev. A 69, 062320 (2004).

    Article  Google Scholar 

  4. Blais, A., Grimsmo, A. L., Girvin, S. & Wallraff, A. Circuit quantum electrodynamics. Rev. Mod. Phys. 93, 025005 (2021).

    Article  CAS  Google Scholar 

  5. Clerk, A. A., Lehnert, K. W., Bertet, P., Petta, J. R. & Nakamura, Y. Hybrid quantum systems with circuit quantum electrodynamics. Nat. Phys. 16, 257–267 (2020).

    Article  Google Scholar 

  6. Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic cavity quantum electrodynamics with quantum dots. Phys. Rev. A 69, 042302 (2004).

    Article  Google Scholar 

  7. Burkard, G. & Imamoglu, A. Ultra-long-distance interaction between spin qubits. Phys. Rev. B 74, 041307(R) (2006).

    Article  Google Scholar 

  8. Hu, X., xi Liu, Y. & Nori, F. Strong coupling of a spin qubit to a superconducting stripline cavity. Phys. Rev. B 86, 035314 (2012).

    Article  Google Scholar 

  9. Jin, P. Q., Marthaler, M., Shnirman, A. & Schön, G. Strong coupling of spin qubits to a transmission line resonator. Phys. Rev. Lett. 108, 190506 (2012).

    Article  Google Scholar 

  10. Frey, T. et al. Dipole coupling of a double quantum dot to a microwave resonator. Phys. Rev. Lett. 108, 046807 (2012).

    Article  CAS  Google Scholar 

  11. Petersson, K. D. et al. Circuit quantum electrodynamics with a spin qubit. Nature 490, 380–383 (2012).

    Article  Google Scholar 

  12. Viennot, J. J., Dartiailh, M. C., Cottet, A. & Kontos, T. Coherent coupling of a single spin to microwave cavity photons. Science 349, 408–411 (2015).

    Article  Google Scholar 

  13. Burkard, G., Ladd, T. D., Nichol, J. M., Pan, A., and Petta, J. R. Semiconductor spin qubits. Preprint at https://arxiv.org/abs/2112.08863 (2021).

  14. Imamoglu, A. et al. Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999).

    Article  CAS  Google Scholar 

  15. Vandersypen, L. M. K. et al. Interfacing spin qubits in quantum dots and donors—hot, dense, and coherent. npj Quantum Inf. 3, 34 (2017).

    Article  Google Scholar 

  16. Samkharadze, N. et al. Strong spin-photon coupling in silicon. Science 359, 1123–1127 (2018).

    Article  Google Scholar 

  17. Mi, X. et al. A coherent spin–photon interface in silicon. Nature 555, 599–603 (2018).

    Article  Google Scholar 

  18. Borjans, F., Croot, X. G., Mi, X., Gullans, M. J. & Petta, J. R. Resonant microwave-mediated interactions between distant electron spins. Nature 577, 195–198 (2019).

    Google Scholar 

  19. Harvey-Collard, P. et al. Coherent spin-spin coupling mediated by virtual microwave photons. Phys. Rev. X 12, 021026 (2022).

    CAS  Google Scholar 

  20. Luttinger, J. M. & Kohn, W. Motion of electrons and holes in perturbed periodic fields. Phys. Rev. 97, 869 (1955).

    Article  CAS  Google Scholar 

  21. Winkler, R. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer, 2003).

  22. Kloeffel, C., Trif, M., Stano, P. & Loss, D. Circuit QED with hole-spin qubits in Ge/Si nanowire quantum dots. Phys. Rev. B 88, 241405 (2013).

    Article  Google Scholar 

  23. Nigg, S. E., Fuhrer, A. & Loss, D. Superconducting grid-bus surface code architecture for hole-spin qubits. Phys. Rev. Lett. 118, 147701 (2017).

    Article  Google Scholar 

  24. Mutter, P. M. & Burkard, G. Natural heavy-hole flopping mode qubit in germanium. Phys. Rev. Research 3, 013194 (2021).

    Article  CAS  Google Scholar 

  25. Michal, V. P. et al. Tunable hole spin-photon interaction based on g-matrix modulation. Phys. Rev. B 107, L041303 (2023).

    Article  CAS  Google Scholar 

  26. Bosco, S., Scarlino, P., Klinovaja, J. & Loss, D. Fully tunable longitudinal spin-photon interactions in Si and Ge quantum dots. Phys. Rev. Lett. 129, 066801 (2022).

    Article  CAS  Google Scholar 

  27. Kloeffel, C., Rančić, M. J. & Loss, D. Direct Rashba spin-orbit interaction in Si and Ge nanowires with different growth directions. Phys. Rev. B 97, 235422 (2018).

    Article  CAS  Google Scholar 

  28. Niepce, D., Burnett, J. & Bylander, J. High kinetic inductance NbN nanowire superinductors. Phys. Rev. Appl. 11, 044014 (2019).

    Article  CAS  Google Scholar 

  29. Yu, C. X. et al. Magnetic field resilient high kinetic inductance superconducting niobium nitride coplanar waveguide resonators. Appl. Phys. Lett. 118, 054001 (2021).

    Article  CAS  Google Scholar 

  30. Gorman, J., Hasko, D. G. & Williams, D. A. Charge-qubit operation of an isolated double quantum dot. Phys. Rev. Lett. 95, 090502 (2005).

    Article  CAS  Google Scholar 

  31. Crippa, A. et al. Electrical spin driving by g-matrix modulation in spin-orbit qubits. Phys. Rev. Lett. 120, 137702 (2018).

    Article  CAS  Google Scholar 

  32. Fischer, J., Coish, W., Bulaev, D. & Loss, D. Spin decoherence of a heavy hole coupled to nuclear spins in a quantum dot. Phys. Rev. B 78, 155329 (2008).

    Article  Google Scholar 

  33. Piot, N. et al. A single hole spin with enhanced coherence in natural silicon. Nat. Nanotechnol. 17, 1072 (2022).

    Article  CAS  Google Scholar 

  34. Li, J., Venitucci, B. & Niquet, Y.-M. Hole-phonon interactions in quantum dots: effects of phonon confinement and encapsulation materials on spin-orbit qubits. Phys. Rev. B 102, 075415 (2020).

    Article  CAS  Google Scholar 

  35. Benito, M., Mi, X., Taylor, J. M., Petta, J. R. & Burkard, G. Input-output theory for spin-photon coupling in Si double quantum dots. Phys. Rev. B 96, 235434 (2017).

    Article  Google Scholar 

  36. Mi, X. et al. Circuit quantum electrodynamics architecture for gate-defined quantum dots in silicon. Appl. Phys. Lett. 110, 043502 (2017).

    Article  Google Scholar 

  37. Harvey-Collard, P. et al. On-chip microwave filters for high-impedance resonators with gate-defined quantum dots. Phys. Rev. Appl. 14, 034025 (2020).

    Article  CAS  Google Scholar 

  38. Benito, M., Petta, J. R. & Burkard, G. Optimized cavity-mediated dispersive two-qubit gates between spin qubits. Phys. Rev. B 100, 081412 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.-L. Thomassin and F. Gustavo for help in the fabrication of the NbN circuitry and M. Boujard and I. Matei for technical support in the lab. V. Renard is acknowledged for careful proofreading of the manuscript. This research has been supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement nos. 951852 (QLSI project), 810504 (ERC project QuCube) and 759388 (ERC project LONGSPIN), as well as by the French National Research Agency (ANR) through the project MAQSi. S.Z. acknowledges support by an Early Postdoc Mobility fellowship (P2BSP2_184387) from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

C.X.Y. fabricated the NbN circuitry with help from S.Z. C.X.Y. and S.Z. performed the measurements. S.Z. analysed the data with inputs from C.X.Y., J.C.A.-U., É.D. and R.M. J.C.A.-U. developed the theoretical model with help from V.P.M., M.F. and Y.-M.N. S.Z., R.M., J.C.A.-U., S.D.F. and Y.-M.N. co-wrote the manuscript with inputs from all the authors. N.R., H.N, T.B., M.V. and B.B. were responsible for the front-end fabrication of the device. R.M. initiated the project.

Corresponding authors

Correspondence to Simon Zihlmann or Romain Maurand.

Ethics declarations

Competing interests

M.V. is co-founder and CEO of siquance.

Peer review

Peer review information

Nature Nanotechnology thanks Malcolm Carroll, Hai-Ou Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections I–XII, Figs. 1–12 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C.X., Zihlmann, S., Abadillo-Uriel, J.C. et al. Strong coupling between a photon and a hole spin in silicon. Nat. Nanotechnol. 18, 741–746 (2023). https://doi.org/10.1038/s41565-023-01332-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01332-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing