Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures

Abstract

The central dogma that nanoparticle delivery to tumours requires enhanced leakiness of vasculatures is a topic of debate. To address this, we propose a single-vessel quantitative analysis method by taking advantage of protein-based nanoprobes and image-segmentation-based machine learning (nano-ISML). Using nano-ISML, >67,000 individual blood vessels from 32 tumour models were quantified, revealing highly heterogenous vascular permeability of protein-based nanoparticles. There was a >13-fold difference in the percentage of high-permeability vessels in different tumours and >100-fold penetration ability in vessels with the highest permeability compared with vessels with the lowest permeability. Our data suggest passive extravasation and transendothelial transport were the dominant mechanisms for high- and low-permeability tumour vessels, respectively. To exemplify the nano-ISML-assisted rational design of nanomedicines, genetically tailored protein nanoparticles with improved transendothelial transport in low-permeability tumours were developed. Our study delineates the heterogeneity of tumour vascular permeability and defines a direction for the rational design of next-generation anticancer nanomedicines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ML-based single-vessel analysis method.
Fig. 2: Quantitative analysis of heterogeneous vascular permeability using the nano-ISML method.
Fig. 3: Heterogeneity of vascular permeability mechanism.
Fig. 4: Characterization of FTn and FTn variants.
Fig. 5: Enhancement of active transendothelial transport.
Fig. 6: In vivo anticancer ability of different FTn formulations.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article and its Supplementary Information. All relevant data can be made available upon reasonable request to the corresponding authors. Source data are provided with this paper.

Code availability

The source code of machine learning-based model can be accessed at https://github.com/balabilibili24/Confocal_images_analysis.git.

References

  1. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Article  CAS  Google Scholar 

  2. Blanco, E., Shen, H. & Ferrari, M. Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat. Biotechnol. 33, 941–951 (2015).

    Article  CAS  Google Scholar 

  3. Huang, X. et al. Hypoxia-tropic protein nanocages for modulation of tumor- and chemotherapy-associated hypoxia. ACS Nano 13, 236–247 (2019).

    Article  CAS  Google Scholar 

  4. Dvorak, A. M. et al. The vesiculo-vacuolar organelle (VVO): a distinct endothelial cell structure that provides a transcellular pathway for macromolecular extravasation. J. Leukoc. Biol. 59, 100–115 (1996).

    Article  CAS  Google Scholar 

  5. Dvorak, A. M. & Feng, D. The vesiculo-vacuolar organelle (VVO). A new endothelial cell permeability organelle. J. Histochem. Cytochem. 49, 419–432 (2001).

    Article  CAS  Google Scholar 

  6. Claesson-Welsh, L. Vascular permeability—the essentials. Ups. J. Med Sci. 120, 135–143 (2015).

    Article  Google Scholar 

  7. Matsumura, Y. & Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 46, 6387–6392 (1986).

    CAS  Google Scholar 

  8. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  9. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  CAS  Google Scholar 

  10. Moen, E. et al. Deep learning for cellular image analysis. Nat. Methods 16, 1233–1246 (2019).

    Article  CAS  Google Scholar 

  11. Greenwald, N. F. et al. Whole-cell segmentation of tissue images with human-level performance using large-scale data annotation and deep learning. Nat. Biotechnol. 40, 555–565 (2022).

    Article  CAS  Google Scholar 

  12. Wei, Y. et al. Prediction and design of nanozymes using explainable machine learning. Adv. Mater. 34, e2201736 (2022).

    Article  Google Scholar 

  13. Lin, X. et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Lett. 11, 814–819 (2011).

    Article  CAS  Google Scholar 

  14. Fan, K. et al. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nat. Nanotechnol. 7, 459–464 (2012).

    Article  CAS  Google Scholar 

  15. Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).

    Article  Google Scholar 

  16. Caicedo, J. C. et al. Data-analysis strategies for image-based cell profiling. Nat. Methods 14, 849–863 (2017).

    Article  CAS  Google Scholar 

  17. Falk, T. et al. U-Net: deep learning for cell counting, detection, and morphometry. Nat. Methods 16, 67–70 (2019).

    Article  CAS  Google Scholar 

  18. Todorov, M. I. et al. Machine learning analysis of whole mouse brain vasculature. Nat. Methods 17, 442–449 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, Y. et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 33, e2006570 (2021).

    Article  Google Scholar 

  20. Nagy, J. A., Chang, S. H., Shih, S. C., Dvorak, A. M. & Dvorak, H. F. Heterogeneity of the tumor vasculature. Semin Thromb. Hemost. 36, 321–331 (2010).

    Article  CAS  Google Scholar 

  21. Feng, D., Nagy, J. A., Dvorak, A. M. & Dvorak, H. F. Different pathways of macromolecule extravasation from hyperpermeable tumor vessels. Microvasc. Res. 59, 24–37 (2000).

    Article  CAS  Google Scholar 

  22. Bonam, S. R., Wang, F. & Muller, S. Lysosomes as a therapeutic target. Nat. Rev. Drug Discov. 18, 923–948 (2019).

    Article  CAS  Google Scholar 

  23. Rennick, J. J., Johnston, A. P. R. & Parton, R. G. Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nat. Nanotechnol. 16, 266–276 (2021).

    Article  CAS  Google Scholar 

  24. Tai, W., Li, J., Corey, E. & Gao, X. A ribonucleoprotein octamer for targeted siRNA delivery. Nat. Biomed. Eng. 2, 326–337 (2018).

    Article  CAS  Google Scholar 

  25. Bern, M. et al. An engineered human albumin enhances half-life and transmucosal delivery when fused to protein-based biologics. Sci. Transl. Med. 12, eabb0580 (2020).

    Article  CAS  Google Scholar 

  26. Yokota, S. & Fahimi, H. D. Immunocytochemical localization of albumin in the secretory apparatus of rat liver parenchymal cells. Proc. Natl Acad. Sci. USA 78, 4970–4974 (1981).

    Article  CAS  Google Scholar 

  27. Shroyer, K. R. & Nakane, P. K. Immunohistochemical localization of albumin and in situ hybridization of albumin mRNA. Cell Biochem. Funct. 5, 195–210 (1987).

    Article  CAS  Google Scholar 

  28. Pelletier, L., Jokitalo, E. & Warren, G. The effect of Golgi depletion on exocytic transport. Nat. Cell Biol. 2, 840–846 (2000).

    Article  CAS  Google Scholar 

  29. De Matteis, M. A. & Luini, A. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9, 273–284 (2008).

    Article  Google Scholar 

  30. Jiang, B. et al. A natural drug entry channel in the ferritin nanocage. Nano Today 35, 100948 (2020).

    Article  CAS  Google Scholar 

  31. Huang, X. et al. Protein nanocages that penetrate airway mucus and tumor tissue. Proc. Natl Acad. Sci. USA 114, E6595–E6602 (2017).

    Article  CAS  Google Scholar 

  32. Liu, Q. et al. Modular assembly of tumor-penetrating and oligomeric nanozyme based on intrinsically self-assembling protein nanocages. Adv. Mater. 33, e2103128 (2021).

    Article  Google Scholar 

  33. Ronneberger, O., Fischer, P. & Brox, T. U-Net: convolutional networks for biomedical image segmentation. Med. Image Comput. Comput. Assist. Interv. 9351, 234–241 (2015).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China 91959129 (X.H.), 32271448 (X.H.), 82072054 (J.Z.), 31870999 (X.H.), the National Key Research and Development Program of China 2022YFA1105100 (X.H.), Tianjin Synthetic Biotechnology Innovation Capacity Improvement Project TSBICIP-KJGG-014-03 (X.H.) and the Nankai University Hundred Young Academic Leaders Program.

Author information

Authors and Affiliations

Authors

Contributions

M.Z., J.Z. and X.H. conceived the idea, collected data, conducted data analysis and performed all the experiments. Z.L. assisted with the development of the U-net model. M.Z. and X.H extracted data information from U-net. Q.L., Z.G., Z.Z., T.Q., J.T. and R.Z. performed cryosections and immunostaining. A.C.M. provided guidance and edited the manuscript. D.K., J.T. and X.Y. helped to guide part of experiments. X.H. designed and supervised all studies and wrote the manuscript.

Corresponding authors

Correspondence to Jie Tian, Xiyun Yan or Xinglu Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Bjoern Menze, Constantinos Mikelis and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Tables 1–5.

Reporting Summary

Source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Fig. 4

Unprocessed gels and statistical source data

Source Data Fig. 5

Statistical source data

Source Data Fig. 6

Statistical source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Zhuang, J., Li, Z. et al. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 18, 657–666 (2023). https://doi.org/10.1038/s41565-023-01323-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01323-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research