Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coloured vortex beams with incoherent white light illumination

Abstract

The orbital angular momentum is a fundamental degree of freedom of light wavefronts, currently exploited in applications where information capacity is a key requirement, such as optical communication, super-resolution imaging and high-dimensional quantum computing. However, generating orbital angular momentum beams requires spatio-temporally coherent light sources (lasers or supercontinuum sources), because incoherent light would smear out the doughnut features of orbital angular momentum beams, forming polychromatic or obscured orbital angular momentum beams instead. Here we show generation of coloured orbital angular momentum beams using incoherent white light. Spatio-temporal coherence is achieved by miniaturizing spiral phase plates and integrating them with structural colour filters, three-dimensionally printed at the nanoscale. Our scheme can in principle generate multiple helical eigenstates and combine colour information into orbital angular momentum beams independently. These three-dimensional optical elements encoded with colour and orbital angular momentum information substantially increase the number of combinations for optical anti-counterfeiting and photonic lock–key devices in a pairwise fashion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of CVB unit and photonic tally pair.
Fig. 2: Design principle and experimental results of the CVB units.
Fig. 3: Single photonic tally piece and corresponding encrypted information.
Fig. 4: Combined effects of photonic tally pairs.
Fig. 5: Photonic tally pair with different colours.

Similar content being viewed by others

Data availability

The data that support the figures and other findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

Code availability

The code used for the photonic tally design and characterization is available from the corresponding authors upon reasonable request.

References

  1. Nye, J. F., Berry, M. V. & Frank, F. C. Dislocations in wave trains. Proc. R. Soc. Lond. A 336, 165–190 (1974).

    Google Scholar 

  2. Allen, L., Beijersbergen, M. W., Spreeuw, R. J. C. & Woerdman, J. P. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45, 8185–8189 (1992).

    CAS  Google Scholar 

  3. Yan, Y. et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nat. Commun. 5, 4876 (2014).

    CAS  Google Scholar 

  4. Lei, T. et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl. 4, e257 (2015).

    CAS  Google Scholar 

  5. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nat. Phys. 3, 305–310 (2007).

    CAS  Google Scholar 

  6. Gwosch, K. C. et al. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17, 217–224 (2020).

    CAS  Google Scholar 

  7. Li, L. et al. Metalens-array-based high-dimensional and multiphoton quantum source. Science 368, 1487–1490 (2020).

    CAS  Google Scholar 

  8. Lee, J. C. T., Alexander, S. J., Kevan, S. D., Roy, S. & McMorran, B. J. Laguerre–Gauss and Hermite–Gauss soft X-ray states generated using diffractive optics. Nat. Photon. 13, 205–209 (2019).

    CAS  Google Scholar 

  9. Fang, X., Ren, H. & Gu, M. Orbital angular momentum holography for high-security encryption. Nat. Photon. 14, 102–108 (2020).

    CAS  Google Scholar 

  10. Ren, H. et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol. 15, 948–955 (2020).

    CAS  Google Scholar 

  11. Ouyang, X. et al. Synthetic helical dichroism for six-dimensional optical orbital angular momentum multiplexing. Nat. Photon. 15, 901–907 (2021).

    CAS  Google Scholar 

  12. Ni, J. et al. Multidimensional phase singularities in nanophotonics. Science 374, eabj0039 (2021).

    CAS  Google Scholar 

  13. Beijersbergen, M. W., Coerwinkel, R. P. C., Kristensen, M. & Woerdman, J. P. Helical-wavefront laser beams produced with a spiral phaseplate. Opt. Commun. 112, 321–327 (1994).

    Google Scholar 

  14. Sroor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    CAS  Google Scholar 

  15. Cai, X. et al. Integrated compact optical vortex beam emitters. Science 338, 363–366 (2012).

    CAS  Google Scholar 

  16. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    CAS  Google Scholar 

  17. Zhang, Z. et al. Tunable topological charge vortex microlaser. Science 368, 760–763 (2020).

    CAS  Google Scholar 

  18. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    CAS  Google Scholar 

  19. Genevet, P., Lin, J., Kats, M. A. & Capasso, F. Holographic detection of the orbital angular momentum of light with plasmonic photodiodes. Nat. Commun. 3, 1278 (2012).

    Google Scholar 

  20. Huang, K. et al. Spiniform phase-encoded metagratings entangling arbitrary rational-order orbital angular momentum. Light Sci. Appl. 7, 17156 (2018).

    CAS  Google Scholar 

  21. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Google Scholar 

  22. Chen, W., Chen, Y. & Liu, W. Singularities and Poincare indices of electromagnetic multipoles. Phys. Rev. Lett. 122, 153907 (2019).

    CAS  Google Scholar 

  23. Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    CAS  Google Scholar 

  24. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    CAS  Google Scholar 

  25. Berkhout, G. C. G., Lavery, M. P. J., Courtial, J., Beijersbergen, M. W. & Padgett, M. J. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett. 105, 153601 (2010).

    Google Scholar 

  26. Wang, J. et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photon. 6, 488–496 (2012).

    CAS  Google Scholar 

  27. Mirhosseini, M., Malik, M., Shi, Z. & Boyd, R. W. Efficient separation of the orbital angular momentum eigenstates of light. Nat. Commun. 4, 2781 (2013).

    Google Scholar 

  28. Ren, H., Li, X., Zhang, Q. & Gu, M. On-chip noninterference angular momentum multiplexing of broadband light. Science 352, 805–809 (2016).

    CAS  Google Scholar 

  29. Jin, Z. et al. Phyllotaxis-inspired nanosieves with multiplexed orbital angular momentum. eLight 1, 5 (2021).

    Google Scholar 

  30. Zhang, J. et al. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber. Photon. Res. 8, 1236–1242 (2020).

    CAS  Google Scholar 

  31. Fang, J. et al. Spin-dependent optical geometric transformation for cylindrical vector beam multiplexing communication. ACS Photon. 5, 3478–3484 (2018).

    CAS  Google Scholar 

  32. Jung, C. et al. Metasurface-driven optically variable devices. Chem. Rev. 121, 13013–13050 (2021).

    CAS  Google Scholar 

  33. Ozaki, M., Kato, J.-i & Kawata, S. Surface-plasmon holography with white-light illumination. Science 332, 218–220 (2011).

    CAS  Google Scholar 

  34. Joo, W.-J. et al. Metasurface-driven Oled displays beyond 10,000 pixels per inch. Science 370, 459–463 (2020).

    CAS  Google Scholar 

  35. Remmersmann, C., Stürwald, S., Kemper, B., Langehanenberg, P. & von Bally, G. Phase noise optimization in temporal phase-shifting digital holography with partial coherence light sources and its application in quantitative cell imaging. Appl. Opt. 48, 1463–1472 (2009).

    Google Scholar 

  36. León-Rodríguez, M., Rodríguez-Vera, R., Rayas, J. A. & Calixto, S. High topographical accuracy by optical shot noise reduction in digital holographic microscopy. J. Opt. Soc. Am. A 29, 498–506 (2012).

    Google Scholar 

  37. Lavery, M. P. J., Barnett, S. M., Speirits, F. C. & Padgett, M. J. Observation of the rotational Doppler shift of a white-light, orbital-angular-momentum-carrying beam backscattered from a rotating body. Optica 1, 1–4 (2014).

    Google Scholar 

  38. Ren, H. et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun. 13, 4183 (2022).

    CAS  Google Scholar 

  39. Shi, Z. et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett. 18, 2420–2427 (2018).

    CAS  Google Scholar 

  40. Kotlyar, V. V., Kovalev, A. A., Nalimov, A. G. & Stafeev, S. S. Topological charge of multi-color optical vortices. Photonics 9, 145 (2022).

    Google Scholar 

  41. Berry, M. V. & Liu, W. No general relation between phase vortices and orbital angular momentum. J. Phys. A 55, 374001 (2022).

    Google Scholar 

  42. Arppe, R. & Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 1, 0031 (2017).

    CAS  Google Scholar 

  43. Sahoo, S. K., Tang, D. & Dang, C. Single-shot multispectral imaging with a monochromatic camera. Optica 4, 1209–1213 (2017).

    CAS  Google Scholar 

  44. Wang, H. et al. Full color and grayscale painting with 3D printed low-index nanopillars. Nano Lett. 21, 4721–4729 (2021).

    CAS  Google Scholar 

  45. Wang, H. et al. Optical fireworks based on multifocal three-dimensional color prints. ACS Nano 15, 10185–10193 (2021).

    CAS  Google Scholar 

  46. Geday, M. A., Caño-García, M., Otón, J. M. & Quintana, X. Adaptive spiral diffractive lenses—lenses with a twist. Adv. Opt. Mater. 8, 2001199 (2020).

    CAS  Google Scholar 

  47. Nair, S. P., Trisno, J., Wang, H. & Yang, J. K. W. 3D printed fiber sockets for plug and play micro-optics. Int. J. Extrem. Manuf. 3, 015301 (2020).

    Google Scholar 

  48. Dong, Z. et al. Schrodinger’s red pixel by quasi-bound-states-in-the-continuum. Sci. Adv. 8, eabm4512 (2022).

    CAS  Google Scholar 

Download references

Acknowledgements

J.K.W.Y. acknowledges funding support from the National Research Foundation (NRF) of Singapore under its Competitive Research Programme award (NRF-CRP20-2017-0004) and NRF Investigatorship Award (NRF-NRFI06-2020-0005). C.-W.Q. acknowledges financial support from the NRF, Prime Minister’s Office, Singapore under the Competitive Research Program Award (NRF-CRP26-2021-0063). C.-W.Q. is also supported by a grant (A-0005947-16-00) from the Advanced Research and Technology Innovation Centre at the National University of Singapore. M.G. acknowledges the support from the Science and Technology Commission of Shanghai Municipality (grant no. 21DZ1100500) and the Shanghai Frontiers Science Center Program (2021–2025 no. 20).

Author information

Authors and Affiliations

Authors

Contributions

Hongtao Wang, J.K.W.Y. and C.-W.Q. conceived the idea of CVBs and a photonic tally pair. Hongtao Wang performed the design, numerical simulation, fabrication and characterization of the photonic tally pair with assistance from Hao Wang and drafted the paper. All the authors contributed to the data analysis and paper revision. J.K.W.Y. and C.-W.Q. supervised the whole project.

Corresponding authors

Correspondence to Cheng-Wei Qiu or Joel K. W. Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Dong Jianji and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–15 and captions for Videos 1–8.

Supplementary Video 1

Fabrication of CVB units.

Supplementary Video 2

Observation method for CVB units and photonic tallies.

Supplementary Video 3

Photonic tally pair I.

Supplementary Video 4

Photonic tally pair II.

Supplementary Video 5

Photonic tally pair III.

Supplementary Video 6

Photonic tally pair IV.

Supplementary Video 7

Photonic tally pair V, Tetris-like blocks with the same colours.

Supplementary Video 8

Photonic tally pair VI, Tetris-like blocks with different colours.

Source data

Source Data Fig. 2

Measured spectra of Fig. 2f.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, H., Ruan, Q. et al. Coloured vortex beams with incoherent white light illumination. Nat. Nanotechnol. 18, 264–272 (2023). https://doi.org/10.1038/s41565-023-01319-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-023-01319-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing