Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer

Abstract

Photoinduced charge transfer in van der Waals heterostructures occurs on the 100 fs timescale despite weak interlayer coupling and momentum mismatch. However, little is understood about the microscopic mechanism behind this ultrafast process and the role of the lattice in mediating it. Here, using femtosecond electron diffraction, we directly visualize lattice dynamics in photoexcited heterostructures of WSe2/WS2 monolayers. Following the selective excitation of WSe2, we measure the concurrent heating of both WSe2 and WS2 on a picosecond timescale—an observation that is not explained by phonon transport across the interface. Using first-principles calculations, we identify a fast channel involving an electronic state hybridized across the heterostructure, enabling phonon-assisted interlayer transfer of photoexcited electrons. Phonons are emitted in both layers on the femtosecond timescale via this channel, consistent with the simultaneous lattice heating observed experimentally. Taken together, our work indicates strong electron–phonon coupling via layer-hybridized electronic states—a novel route to control energy transport across atomic junctions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: UED of a 2D semiconductor heterostructure.
Fig. 2: Phonon thermal transport across a monolayer WSe2/WS2 heterojunction.
Fig. 3: Lattice dynamics in a photoexcited WSe2/WS2 heterojunction.
Fig. 4: First-principles calculations of the proposed charge transfer and phonon emission mechanism.

Data availability

The data underlying Figs. 14 and Supplementary Figs. 317 are available via Zenodo at https://doi.org/10.5281/zenodo.7328935.

Code availability

The codes and analysis scripts that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  2. Lee, C.-H. et al. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9, 676–681 (2014).

    Article  Google Scholar 

  3. Paul, K. K., Kim, J.-H. & Lee, Y. H. Hot carrier photovoltaics in van der Waals heterostructures. Nat. Rev. Phys. 3, 178–192 (2021).

    Article  CAS  Google Scholar 

  4. Hong, X. et al. Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat. Nanotechnol. 9, 682–686 (2014).

    Article  CAS  Google Scholar 

  5. Zhu, H. et al. Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der Waals heterojunctions. Nano Lett. 17, 3591–3598 (2017).

    Article  CAS  Google Scholar 

  6. Jin, C. et al. Ultrafast dynamics in van der Waals heterostructures. Nat. Nanotechnol. 13, 994–1003 (2018).

    Article  CAS  Google Scholar 

  7. Kim, S. E. et al. Extremely anisotropic van der Waals thermal conductors. Nature 597, 660–665 (2021).

    Article  CAS  Google Scholar 

  8. Vaziri, S. et al. Ultrahigh thermal isolation across heterogeneously layered two-dimensional materials. Sci. Adv. 5, eaax1325 (2019).

    Article  CAS  Google Scholar 

  9. Sood, A. et al. Engineering thermal transport across layered graphene–MoS2 superlattices. ACS Nano 15, 19503–19512 (2021).

    Article  CAS  Google Scholar 

  10. Li, X. et al. Intrinsic electrical transport properties of monolayer silicene and MoS2 from first principles. Phys. Rev. B 87, 115418 (2013).

    Article  Google Scholar 

  11. Ma, E. Y. et al. Recording interfacial currents on the subnanometer length and femtosecond time scale by terahertz emission. Sci. Adv. 5, eaau0073 (2019).

    Article  CAS  Google Scholar 

  12. Yuan, L. et al. Photocarrier generation from interlayer charge-transfer transitions in WS2-graphene heterostructures. Sci. Adv. 4, e1700324 (2018).

    Article  Google Scholar 

  13. Luo, D. et al. Twist-angle-dependent ultrafast charge transfer in MoS2-graphene van der Waals heterostructures. Nano Lett. 21, 8051–8057 (2021).

    Article  CAS  Google Scholar 

  14. Mannebach, E. M. et al. Dynamic structural response and deformations of monolayer MoS2 visualized by femtosecond electron diffraction. Nano Lett. 15, 6889–6895 (2015).

    Article  Google Scholar 

  15. Weathersby, S. P. et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 86, 073702 (2015).

    Article  CAS  Google Scholar 

  16. Shen, X. et al. Femtosecond mega-electron-volt electron microdiffraction. Ultramicroscopy 184, 172–176 (2018).

    Article  CAS  Google Scholar 

  17. Sokolowski-Tinten, K. et al. Electron-lattice energy relaxation in laser-excited thin-film Au-insulator heterostructures studied by ultrafast MeV electron diffraction. Struct. Dyn. 4, 054501 (2017).

    Article  CAS  Google Scholar 

  18. Kang, J., Tongay, S., Zhou, J., Li, J. & Wu, J. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102, 012111 (2013).

    Article  Google Scholar 

  19. Zhou, H., Zhao, Y. & Zhu, H. Dielectric environment-robust ultrafast charge transfer between two atomic layers. J. Phys. Chem. Lett. 10, 150–155 (2019).

    Article  CAS  Google Scholar 

  20. Rigosi, A. F., Hill, H. M., Li, Y., Chernikov, A. & Heinz, T. F. Probing interlayer interactions in transition metal dichalcogenide heterostructures by optical spectroscopy: MoS2/WS2 and MoSe2/WSe2. Nano Lett. 15, 5033–5038 (2015).

    Article  CAS  Google Scholar 

  21. Yalon, E. et al. Energy dissipation in monolayer MoS2 electronics. Nano Lett. 17, 3429–3433 (2017).

    Article  CAS  Google Scholar 

  22. Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  CAS  Google Scholar 

  23. Wang, Y., Wang, Z., Yao, W., Liu, G.-B. & Yu, H. Interlayer coupling in commensurate and incommensurate bilayer structures of transition-metal dichalcogenides. Phys. Rev. B 95, 115429 (2017).

    Article  Google Scholar 

  24. Ji, Z. et al. Robust stacking-independent ultrafast charge transfer in MoS2/WS2 bilayers. ACS Nano 11, 12020–12026 (2017).

    Article  CAS  Google Scholar 

  25. Wang, K. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 10, 6612–6622 (2016).

    Article  CAS  Google Scholar 

  26. Liu, F., Li, Q. & Zhu, X.-Y. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405 (2020).

    Article  CAS  Google Scholar 

  27. Zheng, Q. et al. Phonon-assisted ultrafast charge transfer at van der Waals heterostructure interface. Nano Lett. 17, 6435–6442 (2017).

    Article  CAS  Google Scholar 

  28. Tian, Y., Zheng, Q. & Zhao, J. Tensile strain-controlled photogenerated carrier dynamics at the van der Waals heterostructure interface. J. Phys. Chem. Lett. 11, 586–590 (2020).

    Article  CAS  Google Scholar 

  29. Wang, Z. et al. Phonon-mediated interlayer charge separation and recombination in a MoSe2/WSe2 heterostructure. Nano Lett. 21, 2165–2173 (2021).

    Article  CAS  Google Scholar 

  30. Lin, M.-F. et al. Ultrafast non-radiative dynamics of atomically thin MoSe2. Nat. Commun. 8, 1745 (2017).

    Article  Google Scholar 

  31. Poellmann, C. et al. Resonant internal quantum transitions and femtosecond radiative decay of excitons in monolayer WSe2. Nat. Mater. 14, 889–893 (2015).

    Article  CAS  Google Scholar 

  32. Lien, D.-H. et al. Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors. Science 364, 468–471 (2019).

    Article  CAS  Google Scholar 

  33. Kim, H., Uddin, S. Z., Higashitarumizu, N., Rabani, E. & Javey, A. Inhibited nonradiative decay at all exciton densities in monolayer semiconductors. Science 373, 448–452 (2021).

    Article  CAS  Google Scholar 

  34. Merkl, P. et al. Twist-tailoring Coulomb correlations in van der Waals homobilayers. Nat. Commun. 11, 2167 (2020).

    Article  CAS  Google Scholar 

  35. van der Zande, A. M. et al. Tailoring the electronic structure in bilayer molybdenum disulfide via interlayer twist. Nano Lett. 14, 3869–3875 (2014).

    Article  Google Scholar 

  36. Bradley, A. J. et al. Probing the role of interlayer coupling and Coulomb interactions on electronic structure in few-layer MoSe2 nanostructures. Nano Lett. 15, 2594–2599 (2015).

    Article  CAS  Google Scholar 

  37. Majumdar, A. & Reddy, P. Role of electron–phonon coupling in thermal conductance of metal–nonmetal interfaces. Appl. Phys. Lett. 84, 4768–4770 (2004).

    Article  CAS  Google Scholar 

  38. Tomko, J. A. et al. Long-lived modulation of plasmonic absorption by ballistic thermal injection. Nat. Nanotechnol. 16, 47–51 (2021).

    Article  CAS  Google Scholar 

  39. Li, Y. et al. Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys. Rev. B 90, 205422 (2014).

  40. Byrnes, S. J. Multilayer optical calculations. Preprint at https://arxiv.org/abs/1603.02720 (2016).

  41. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Article  CAS  Google Scholar 

  42. Steinhoff, A. et al. Exciton fission in monolayer transition metal dichalcogenide semiconductors. Nat. Commun. 8, 1166 (2017).

    Article  CAS  Google Scholar 

  43. Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

    Article  CAS  Google Scholar 

  44. Liang, Y. & Yang, L. Carrier plasmon induced nonlinear band gap renormalization in two-dimensional semiconductors. Phys. Rev. Lett. 114, 063001 (2015).

    Article  CAS  Google Scholar 

  45. Liu, J., Zhang, X. & Lu, G. Excitonic effect drives ultrafast dynamics in van der Waals heterostructures. Nano Lett. 20, 4631–4637 (2020).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  48. Maity, I., Naik, M. H., Maiti, P. K., Krishnamurthy, H. R. & Jain, M. Phonons in twisted transition-metal dichalcogenide bilayers: ultrasoft phasons and a transition from a superlubric to a pinned phase. Phys. Rev. Research 2, 013335 (2020).

    Article  CAS  Google Scholar 

  49. Poncé, S., Margine, E. R., Verdi, C. & Giustino, F. EPW: electron–phonon coupling, transport and superconducting properties using maximally localized Wannier functions. Comput. Phys. Commun. 209, 116–133 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge M. Kozina, S. Park, D. Luo and T. Mattox for experimental support, and M. Naik for insightful discussions. A.R. gratefully acknowledges support through the Early Career LDRD Program of Lawrence Berkeley National Laboratory under US Department of Energy (DOE) contract no. DE-AC02-05CH11231. Sample fabrication at the Molecular Foundry was supported by the US DOE Office of Basic Energy Sciences under contract no. DE-AC02-05CH11231. E.C.R. and F.W. also acknowledge support from the US DOE, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231 (van der Waals heterostructure program KCFW16). Research at SLAC was supported by the US DOE, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division. The UED experiments were performed at the SLAC MeV-UED which is operated as part of the Linac Coherent Light Source at the SLAC National Accelerator Laboratory, supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The computational work was supported by the Center for Computational Study of Excited State Phenomena in Energy Materials (C2SEPEM), which is funded by the DOE, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-AC02-05CH11231, as part of the Computational Materials Sciences Program. We acknowledge the use of computational resources at the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the DOE Office of Science under the above contract, using NERSC awards BES-ERCAP-2651 for the electronic structure calculations and BES-ERCAP-m3606 for the molecular dynamics simulations. Additional computational resources were provided by the Extreme Science and Engineering Discovery Environment (XSEDE) supercomputer Stampede2 at the Texas Advanced Computing Center (TACC) through the allocation TG-DMR190070 for electron–phonon calculations. E.B. and J.D.G. acknowledgs support from the Natural Science and Engineering Research Council (NSERC) Canada through the Post-Graduate Scholarship PGS D3-502559-2017 and PGS D-568202-2022, respectively. E.C.R. acknowledges support from the Department of Defense through the National Defense Science & Engineering Graduate Fellowship (NDSEG) Program. K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 19H05790, 20H00354 and 21H05233).

Author information

Authors and Affiliations

Authors

Contributions

A.S., A.R. and A.M.L. conceived the experiments. A.R. supervised the project. J.C. and A.R. prepared the heterostructures with inputs from E.C.R. A.S., J.C. and A.R. performed the UED experiments with support from A.H.M.R., X.S., M.E.Z., J.Y., X.W. and A.M.L. A.S. and J.C. analysed the UED data. A.S. performed the thermal transport calculations. F.H.J. designed the theoretical approach. J.B.H. and E.A.P. carried out the first-principles calculations with supervision from F.H.J. and inputs from J.B.N. E.B. performed the absorption and PL measurements under the supervision of T.F.H. J.D.G. performed the molecular dynamics simulations of thermal transport under the supervision of F.H.J. T.T. and K.W. grew the hBN crystals. A.S. and J.B.H. prepared the initial draft with significant contributions from E.A.P., F.H.J. and A.R., and feedback from J.B.N., T.F.H. and A.M.L. All the authors commented on the manuscript and approved the final version.

Corresponding authors

Correspondence to Aditya Sood, Aaron M. Lindenberg, Felipe H. da Jornada or Archana Raja.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Xiangfan Xu, Jin Zhao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18 and Sections 1–5.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sood, A., Haber, J.B., Carlström, J. et al. Bidirectional phonon emission in two-dimensional heterostructures triggered by ultrafast charge transfer. Nat. Nanotechnol. 18, 29–35 (2023). https://doi.org/10.1038/s41565-022-01253-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01253-7

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research