Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes

Abstract

Cost-effective, high-throughput industrial applications of metal halide perovskites in large-area displays are hampered by the fundamental difficulty of controlling the process of polycrystalline film formation from precursors, which results in the random growth of crystals, leading to non-uniform large grains and thus low electroluminescence efficiency in large-area perovskite light-emitting diodes (PeLEDs). Here we report that highly efficient large-area PeLEDs with high uniformity can be realized through the use of colloidal perovskite nanocrystals (PNCs), decoupling the crystallization of perovskites from film formation. PNCs were precrystallized and surrounded by organic ligands, and thus they were not affected by the film formation process, in which a simple modified bar-coating method facilitated the evaporation of residual solvent to provide uniform large-area films. PeLEDs incorporating the uniform bar-coated PNC films achieved an external quantum efficiency (EQE) of 23.26% for a pixel size of 4 mm2 and an EQE of 22.5% for a large pixel area of 102 mm2 with high reproducibility. This method provides a promising approach towards the development of large-scale industrial displays and solid-state lighting using perovskite emitters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characteristics of colloidal PNCs for large-area bar-coated PeLEDs.
Fig. 2: Suppressed ion migration and charge trapping in PNC films.
Fig. 3: Photophysical analysis of PNC and polycrystalline films fabricated by m-bar coating and spin coating.
Fig. 4: Characteristics of FA0.875GA0.125PbBr3 PNC-PeLEDs.
Fig. 5: Characteristics of large-area FA0.875GA0.125PbBr3 PNC-PeLEDs.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Kim, Y.-H., Cho, H. & Lee, T.-W. Metal halide perovskite light emitters. Proc. Natl Acad. Sci. USA 113, 11694–11702 (2016).

    Article  CAS  Google Scholar 

  2. Park, M.-H. et al. Boosting efficiency in polycrystalline metal halide perovskite light-emitting diodes. ACS Energy Lett. 4, 1134–1149 (2019).

    Article  CAS  Google Scholar 

  3. Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  CAS  Google Scholar 

  4. Kim, Y.-H. et al. Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27, 1248–1254 (2015).

    Article  CAS  Google Scholar 

  5. Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    Article  CAS  Google Scholar 

  6. Jean, J. et al. Synthesis cost dictates the commercial viability of lead sulfide and perovskite quantum dot photovoltaics. Energy Environ. Sci. 11, 2295–2305 (2018).

    Article  CAS  Google Scholar 

  7. Yoo, J. J. et al. Efficient perovskite solar cells via improved carrier management. Nature 590, 587–593 (2021).

    Article  CAS  Google Scholar 

  8. Kim, Y.-H. et al. Comprehensive defect suppression in perovskite nanocrystals for high-efficiency light-emitting diodes. Nat. Photon. 15, 148–155 (2021).

    Article  CAS  Google Scholar 

  9. Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    Article  CAS  Google Scholar 

  10. Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    Article  CAS  Google Scholar 

  11. Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Article  CAS  Google Scholar 

  12. Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    Article  CAS  Google Scholar 

  13. Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    Article  CAS  Google Scholar 

  14. Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    Article  CAS  Google Scholar 

  15. Dong, Y. et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat. Nanotechnol. 15, 668–674 (2020).

    Article  CAS  Google Scholar 

  16. Chu, S. et al. Large-area and efficient perovskite light-emitting diodes via low-temperature blade-coating. Nat. Commun. 12, 147 (2021).

    Article  CAS  Google Scholar 

  17. Zeng, L. et al. Controlling the crystallization dynamics of photovoltaic perovskite layers on larger-area coatings. Energy Environ. Sci. 13, 4666–4690 (2020).

    Article  CAS  Google Scholar 

  18. Zhao, X. & Tan, Z.-K. Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14, 215–218 (2020).

    Article  CAS  Google Scholar 

  19. Zhao, L., Lee, K. M., Roh, K., Khan, S. U. Z. & Rand, B. P. Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31, 1805836 (2019).

    Article  CAS  Google Scholar 

  20. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  Google Scholar 

  21. Zhang, F. et al. Brightly luminescent and color-tunable colloidal CH3NH3PbX3 (X = Br, I, Cl) quantum dots: potential alternatives for display technology. ACS Nano 9, 4533–4542 (2015).

    Article  CAS  Google Scholar 

  22. Swarnkar, A. et al. Quantum dot-induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    Article  CAS  Google Scholar 

  23. Kim, Y.-H. et al. Strategies to achieve high circularly polarized luminescence from colloidal organic–inorganic hybrid perovskite nanocrystals. ACS Nano 14, 8816–8825 (2020).

    Article  CAS  Google Scholar 

  24. Kim, Y.-H., Wolf, C., Kim, H. & Lee, T.-W. Charge carrier recombination and ion migration in metal-halide perovskite nanoparticle films for efficient light-emitting diodes. Nano Energy 52, 329–335 (2018).

    Article  CAS  Google Scholar 

  25. Saeten, J. O., Sjoblom, J. & Gestblom, B. A dielectric spectroscopic study of fatty acid/amine complexes in solution. J. Phys. Chem. 95, 1449–1453 (1991).

    Article  CAS  Google Scholar 

  26. Kumar, S. et al. Ultrapure green light-emitting diodes using two-dimensional formamidinium perovskites: achieving recommendation 2020 color coordinates. Nano Lett. 17, 5277–5284 (2017).

    Article  CAS  Google Scholar 

  27. Galkowski, K. et al. Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. 9, 962–970 (2016).

    Article  CAS  Google Scholar 

  28. Wilson, J. N., Frost, J. M., Wallace, S. K. & Walsh, A. Dielectric and ferroic properties of metal halide perovskites. APL Mater. 7, 010901 (2019).

    Article  CAS  Google Scholar 

  29. Li, W. et al. Relationship of giant dielectric constant and ion migration in CH3NH3PbI3 single crystal using dielectric spectroscopy. J. Phys. Chem. C 124, 13348–13355 (2020).

    Article  CAS  Google Scholar 

  30. Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environ. Sci. 9, 1752–1759 (2016).

    Article  CAS  Google Scholar 

  31. Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article  CAS  Google Scholar 

  32. Kim, Y.-H. et al. Highly efficient light-emitting diodes of colloidal metal–halide perovskite nanocrystals beyond quantum size. ACS Nano 11, 6586–6593 (2017).

    Article  CAS  Google Scholar 

  33. Kim, Y.-H. et al. High efficiency perovskite light-emitting diodes of ligand-engineered colloidal formamidinium lead bromide nanoparticles. Nano Energy 38, 51–58 (2017).

    Article  CAS  Google Scholar 

  34. Yang, Q. et al. Surface polarization and recombination in organic–inorganic hybrid perovskite solar cells based on photo- and electrically induced negative capacitance studies. Org. Electron. 62, 203–208 (2018).

    Article  CAS  Google Scholar 

  35. Hsiao, Y.-C., Wu, T., Li, M. & Hu, B. Magneto-optical studies on spin-dependent charge recombination and dissociation in perovskite solar cells. Adv. Mater. 27, 2899–2906 (2015).

    Article  CAS  Google Scholar 

  36. Sercel, P. C. et al. Exciton fine structure in perovskite nanocrystals. Nano Lett. 19, 4068–4077 (2019).

    Article  CAS  Google Scholar 

  37. Rossi, D. et al. Size-dependent dark exciton properties in cesium lead halide perovskite quantum dots. J. Chem. Phys. 153, 184703 (2020).

    Article  CAS  Google Scholar 

  38. Belyavsky, V. I., Levin, M. N. & Olson, N. J. Defect-induced lattice magnetism: phenomenology of magnetic-field-stimulated defect reactions in nonmagnetic solids. Phys. Rev. B 73, 054429 (2006).

    Article  CAS  Google Scholar 

  39. Zhang, J., Qin, J., Wu, T. & Hu, B. Doping induced orbit–orbit interaction between excitons while enhancing photovoltaic performance in tin perovskite solar cells. J. Phys. Chem. Lett. 11, 6996–7001 (2020).

    Article  CAS  Google Scholar 

  40. Ma, C. W. et al. Time-resolved transient electroluminescence measurements of emission from DCM-doped Alq3 layers. Chem. Phys. Lett. 397, 87–90 (2004).

    Article  CAS  Google Scholar 

  41. Kim, Y.-H., Wolf, C., Cho, H., Jeong, S.-H. & Lee, T.-W. Highly efficient, simplified, solution-processed thermally activated delayed-fluorescence organic light-emitting diodes. Adv. Mater. 28, 734–741 (2016).

    Article  CAS  Google Scholar 

  42. Shim, W. et al. Multifunctional cantilever-free scanning probe arrays coated with multilayer graphene. Proc. Natl Acad. Sci. USA 109, 18312–18317 (2012).

    Article  CAS  Google Scholar 

  43. Gao, A. et al. Printable CsPbBr3 perovskite quantum dot ink for coffee ring-free fluorescent microarrays using inkjet printing. Nanoscale 12, 2569–2577 (2020).

    Article  CAS  Google Scholar 

  44. Deng, W. et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv. Funct. Mater. 26, 4797–4802 (2016).

    Article  CAS  Google Scholar 

  45. Sun, C. et al. High-performance large-area quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 2207 (2021).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Research Foundation of Korea (NRF) grant, funded by the Korean government (MSIT; NRF-2016R1A3B1908431). This research was also supported by the Creative Materials Discovery Program through the NRF, funded by the Ministry of Science and ICT (2018M3D1A1058536).

Author information

Authors and Affiliations

Authors

Contributions

T.-W.L. designed and supervised the study, analysed the data and prepared the manuscript. Y.-H.K. and J.P. designed the study, performed experiments, analysed the data and prepared the manuscript. S.K. and J.S.K. fabricated the perovskite polycrystal and PNC films. S.-H.J. helped with transient EL measurements. H.X. and B.H. performed and analysed magnetic field-dependent measurements. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tae-Woo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Nanotechnology thanks Mingjian Yuan, Haizheng Zhong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1 and 2, Figs. 1–24 and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, YH., Park, J., Kim, S. et al. Exploiting the full advantages of colloidal perovskite nanocrystals for large-area efficient light-emitting diodes. Nat. Nanotechnol. 17, 590–597 (2022). https://doi.org/10.1038/s41565-022-01113-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-022-01113-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing