Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons

Abstract

Quantum confinement of the charge carriers of graphene is an effective way to engineer its properties. This is commonly realized through physical edges that are associated with the deterioration of mobility and strong suppression of plasmon resonances. Here, we demonstrate a simple, large-area, edge-free nanostructuring technique, based on amplifying random nanoscale structural corrugations to a level where they efficiently confine charge carriers, without inducing significant inter-valley scattering. This soft confinement allows the low-loss lateral ultra-confinement of graphene plasmons, scaling up their resonance frequency from the native terahertz to the commercially relevant visible range. Visible graphene plasmons localized into nanocorrugations mediate much stronger light–matter interactions (Raman enhancement) than previously achieved with graphene, enabling the detection of specific molecules from femtomolar solutions or ambient air. Moreover, nanocorrugated graphene sheets also support propagating visible plasmon modes, as revealed by scanning near-field optical microscopy observation of their interference patterns.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Strongly nanocorrugated graphene sheets.
Fig. 2: Electronic structure of graphene nanocorrugations.
Fig. 3: Large Raman enhancement on nanocorrugated graphene sheets.
Fig. 4: Localized and propagating plasmons in nanocorrugated graphene.

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Phys. Rev. Lett. 98, 206805 (2007).

    Google Scholar 

  2. Abajo, F. J. G. Graphene plasmonics: challenges and opportunities. ACS Photonics 1, 135–152 (2014).

    Google Scholar 

  3. Magda, G. Z. et al. Room temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature 514, 608–611 (2014).

    CAS  Google Scholar 

  4. Feng, W., Long, P., Feng, Y. & Li, Y. Two-dimensional fluorinated graphene: synthesis, structures, properties and applications. Adv. Sci. 3, 1500413 (2016).

    Google Scholar 

  5. Cortes-del Rio, E. et al. Quantum confinement of Dirac quasiparticles in graphene patterned with sub‐nanometer precision. Adv. Mater. 32, 2001119 (2020).

    CAS  Google Scholar 

  6. Yang, Y. & Murali, R. Impact of size effect on graphene nanoribbon transport. IEEE Electron Device Lett. 31, 237–239 (2010).

    Google Scholar 

  7. Xu, Q. et al. Effect of edge on graphene plasmons as revealed by infrared nanoimaging. Light Sci. Appl. 6, e16204 (2017).

    CAS  Google Scholar 

  8. Thongrattanasiri, S., Manjavacas, A. & Abajo, F. J. G. Quantum finite-size effects in graphene plasmons. ACS Nano 6, 1766–1775 (2012).

    CAS  Google Scholar 

  9. Beenakker, C. W. J. Colloquium: Andreev reflection and Klein tunneling in graphene. Rev. Mod. Phys. 80, 1337–1354 (2008).

    CAS  Google Scholar 

  10. Sasaki, K. I. & Saito, R. Pseudospin and deformation-induced gauge field in graphene. Prog. Theor. Phys. Suppl. 176, 253–278 (2008).

    CAS  Google Scholar 

  11. Kun, P. et al. Large intravalley scattering due to pseudo-magnetic fields in crumpled graphene. NPJ 2D Mater. Appl. 3, 11 (2019).

    Google Scholar 

  12. Zhao, J. et al. Creating and probing electron whispering gallery modes in graphene. Science 348, 672–675 (2015).

    CAS  Google Scholar 

  13. Lee, J. et al. Imaging electrostaically confined Dirac fermions in graphene quantum dots. Nat. Phys. 12, 1032–1036 (2016).

    CAS  Google Scholar 

  14. Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nat. Photonics 6, 749–758 (2012).

    CAS  Google Scholar 

  15. Koppens, F. H. L., Chang, D. E. & Abajo, F. J. G. Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett. 11, 3370–3377 (2011).

    CAS  Google Scholar 

  16. Hugen, Y. et al. Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat. Photonics 7, 394–399 (2013).

    Google Scholar 

  17. Fang, Z. et al. Active tunable absorption enhancement with graphene nanodisk arrays. Nano Lett. 14, 299–304 (2014).

    CAS  Google Scholar 

  18. Hu, H. et al. Gas identification with graphene plasmons. Nat. Commun. 10, 1131 (2019).

    Google Scholar 

  19. Geringer, V. et al. Intrinsic and extrinsic corrugation of graphene deposited on SiO2. Phys. Rev. Lett. 102, 076102 (2009).

    CAS  Google Scholar 

  20. Márk, G. et al. Simulation of STM images of three-dimensional surfaces and comparison with experimental data: carbon nanotubes. Phys. Rev. B 58, 12645–12648 (1998).

    Google Scholar 

  21. Bao, W. et al. Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat. Nanotechnol. 4, 562–566 (2009).

    CAS  Google Scholar 

  22. Koenig, S. P. et al. Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011).

    CAS  Google Scholar 

  23. Tapasztó, L. et al. Breakdown of continuum mechanics for nanometre-wavelength rippling of graphene. Nat. Phys. 8, 739–742 (2012).

    Google Scholar 

  24. Lim, H., Jung, J., Ruoff, R. S. & Kim, Y. Structurally driven one-dimensional electron confinement in sub-5-nm graphene nanowrinkles. Nat. Commun. 6, 8601 (2015).

    CAS  Google Scholar 

  25. Carillo-Bastos, R., Faria, D., Latge, A., Mireles, F. & Sandler, N. Gaussian deformations in graphene ribbons: flowers and confinement. Phys. Rev. B 90, 041411(R) (2014).

    Google Scholar 

  26. Walker, G. M. M., Tiwari, R. P. & Blaauboer, M. Localization and circulating currents in curved graphene devices. Phys. Rev. B 84, 195427 (2011).

    Google Scholar 

  27. Klimov, N. N. et al. Electromechanical properties of graphene drumheads. Science 336, 1557–1561 (2012).

    CAS  Google Scholar 

  28. Wu, Y. et al. Quantum wires and waveguides formed in graphene by strain. Nano Lett. 18, 64–69 (2018).

    CAS  Google Scholar 

  29. Ling, X. et al. Can graphene be used as a substrate for Raman enhancement? Nano Lett. 10, 553–561 (2010).

    CAS  Google Scholar 

  30. Huang, S. et al. Molecular selectivity of graphene-enhanced Raman scattering. Nano Lett. 15, 2892–2901 (2015).

    CAS  Google Scholar 

  31. Feng, S. et al. Ultrasensitive molecular sensor using N-doped graphene through enhanced Raman scattering. Sci. Adv. 22, e1600322 (2016).

    Google Scholar 

  32. Gregory, P. Industrial applications of phthalocyanines. J. Porphyr. Phthalocyanines 4, 432–437 (2000).

    CAS  Google Scholar 

  33. Chen, J. et al. Optical nano-imaging of gate-tunable graphene plasmons. Nature 487, 77–81 (2012).

    CAS  Google Scholar 

  34. Fei, Z. et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 487, 82–85 (2012).

    CAS  Google Scholar 

  35. Stockman, M. I., Faleev, S. V. & Bergman, D. J. Localization versus delocalization of surface plasmons in nanosystems: can one state have both characteristics? Phys. Rev. Lett. 87, 167401 (2001).

    CAS  Google Scholar 

  36. Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003).

    CAS  Google Scholar 

  37. Ruting, F. Plasmons in disordered nanoparticle chains: Localization and transport. Phys. Rev. B 83, 115447 (2011).

    Google Scholar 

  38. Plimpton, S. J. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  39. Los, J. H. & Fasolino, A. Intrinsic long-range bond-order potential for carbon. Phys. Rev. B 68, 024107 (2003).

    Google Scholar 

  40. Tersoff, J. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988).

    CAS  Google Scholar 

  41. Soler, J. M. et al. The SIESTA method for ab initio order-N materials simulations. J. Phys. Condens. Matter 14, 2745–2779 (2002).

    CAS  Google Scholar 

  42. Yan, J., Mortensen, J. J., Jacobsen, K. W. & Thygesen, K. S. Linear density response function in the projector augmented wave method: Applications to solids, surfaces, and interfaces. Phys. Rev. B 83, 245122 (2011).

    Google Scholar 

  43. Andersen, K., Jacobsen, K. W. & Thygesen, K. S. Spatially resolved quantum plasmon modes in metallic nano-films from first-principles. Phys. Rev. B 86, 245129 (2012).

    Google Scholar 

  44. Ceperley, D. M. & Alder, B. J. Ground state of the electron gas by a stochastic model. Phys. Rev. Lett. 45, 566–569 (1980).

    CAS  Google Scholar 

  45. Colliex, C., Kociak, M. & Stephan, O. Electron energy-loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy 162, A1–A24 (2016).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the NanoFab2D ERC Starting Grant and the Graphene Flagship, H2020 GrapheneCore3 project no. 881603. L.T. acknowledges support from the NKFIH OTKA grant K 132869 and the Élvonal grant KKP 138144. P.N.-I. acknowledges the support of the ‘Lendület’ programme of the Hungarian Academy of Sciences, LP2017-9/2017. L.H. and B.M. acknowledge the use of the computational resources provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11 and by the Walloon Region and the support of the ARC research project No. 19/24-102 SURFASCOPE. G.D. and P.V. acknowledge support from the Bolyai Fellowship of the Hungarian Academy of Sciences. We acknowledge valuable discussions with P. Lambin and F. J. G. de Abajo.

Author information

Authors and Affiliations

Authors

Contributions

L.T. conceived and designed the experiments. G.D. and P.N.-I. performed the sample preparation and the Raman and SNOM measurements. G.D. performed the STM and AFM investigations. P.S. performed molecular dynamics, geometry optimization and DFT LDOS calculations. B.M., P.V. and L.H. performed the optical calculations. P.P. and B.K. performed the spectroscopic ellipsometry investigations. M.M. measured the EELS spectra. G.P. and G.D. conducted the reflectance spectroscopy measurements. L.T. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Levente Tapasztó.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Yousoo Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Tunneling spectra of graphene nanocorrugations.

Additional tunneling spectra acquired under UHV conditions near the top of high aspect ratio (hmax/R > 0.4) graphene nanocorrugations. Inset shows the dI/dV spectra acquired on quasi-flat areas of the sample. b) DFT calculated local density of stated at the apex of a graphene nanocorrugation with hmax/R ~ 0.4.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Discussion.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dobrik, G., Nemes-Incze, P., Majérus, B. et al. Large-area nanoengineering of graphene corrugations for visible-frequency graphene plasmons. Nat. Nanotechnol. 17, 61–66 (2022). https://doi.org/10.1038/s41565-021-01007-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-01007-x

This article is cited by

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research