Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy-resolved plasmonic chemistry in individual nanoreactors

Abstract

Plasmonic resonances can concentrate light into exceptionally small volumes, which approach the molecular scale. The extreme light confinement provides an advantageous pathway to probe molecules at the surface of plasmonic nanostructures with highly sensitive spectroscopies, such as surface-enhanced Raman scattering. Unavoidable energy losses associated with metals, which are usually seen as a nuisance, carry invaluable information on energy transfer to the adsorbed molecules through the resonance linewidth. We measured a thousand single nanocavities with sharp gap plasmon resonances spanning the red to near-infrared spectral range and used changes in their linewidth, peak energy and surface-enhanced Raman scattering spectra to monitor energy transfer and plasmon-driven chemical reactions at their surface. Using methylene blue as a model system, we measured shifts in the absorption spectrum of molecules following surface adsorption and revealed a rich plasmon-driven reactivity landscape that consists of distinct reaction pathways that occur in separate resonance energy windows.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: NCoMs as energy-tunable nanoreactors.
Fig. 2: Forming an experimental resonance energy scale.
Fig. 3: CID and effective molecular absorption.
Fig. 4: MB blue plasmon-driven chemistry.

Similar content being viewed by others

Data availability

Datasets generated during and/or analysed during the current study are available online at https://doi.org/10.6084/m9.figshare.15051894.v1.

Code availability

All custom codes used in the current study are provided along with the relevant data online at https://doi.org/10.6084/m9.figshare.15051894.v1.

References

  1. Wang, F. & Shen, Y. R. General properties of local plasmons in metal nanostructures. Phys. Rev. Lett. 97, 206806 (2006).

    Article  Google Scholar 

  2. Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H. & Smith, D. R. Extreme nanophotonics from ultrathin metallic gaps. Nat. Mater. 18, 668–678 (2019).

    Article  CAS  Google Scholar 

  3. Liang, Z., Sun, J., Jiang, Y., Jiang, L. & Chen, X. Plasmonic enhanced optoelectronic devices. Plasmonics 9, 859–866 (2014).

    Article  Google Scholar 

  4. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010).

    Article  CAS  Google Scholar 

  5. Zhang, Y. et al. Surface-plasmon-driven hot electron photochemistry. Chem. Rev. 118, 2927–2954 (2018).

    Article  CAS  Google Scholar 

  6. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    Article  CAS  Google Scholar 

  7. Haes, A. J., Zou, S., Zhao, J., Schatz, G. C. & Van Duyne, R. P. Localized surface plasmon resonance spectroscopy near molecular resonances. J. Am. Chem. Soc. 128, 10905–10914 (2006).

    Article  CAS  Google Scholar 

  8. Kumar, P. V. et al. Plasmon-induced direct hot-carrier transfer at metal–acceptor interfaces. ACS Nano 13, 3188–3195 (2019).

    Article  CAS  Google Scholar 

  9. Taylor, A. B. & Zijlstra, P. Single-molecule plasmon sensing: current status and future prospects. ACS Sens. 2, 1103–1122 (2017).

    Article  CAS  Google Scholar 

  10. Zhan, C., Moskovits, M. & Tian, Z.-Q. Recent progress and prospects in plasmon-mediated chemical reaction. Matter 3, 42–56 (2020).

    Article  Google Scholar 

  11. Darby, B. L., Auguié, B., Meyer, M., Pantoja, A. E. & Le Ru, E. C. Modified optical absorption of molecules on metallic nanoparticles at sub-monolayer coverage. Nat. Photon. 10, 40–45 (2016).

    Article  CAS  Google Scholar 

  12. Dubi, Y., Un, I. W. & Sivan, Y. Thermal effects—an alternative mechanism for plasmon-assisted photocatalysis. Chem. Sci. 11, 5017–5027 (2020).

    Article  CAS  Google Scholar 

  13. Yu, S. & Jain, P. K. The chemical potential of plasmonic excitations. Angew. Chem. Int. Ed. 59, 2085–2088 (2020).

    Article  CAS  Google Scholar 

  14. Seemala, B. et al. Plasmon-mediated catalytic O2 dissociation on Ag nanostructures: hot electrons or near fields? ACS Energy Lett. 4, 1803–1809 (2019).

    Article  CAS  Google Scholar 

  15. Tesema, T. E., Kafle, B. & Habteyes, T. G. Plasmon-driven reaction mechanisms: hot electron transfer versus plasmon-pumped adsorbate excitation. J. Phys. Chem. C 123, 8469–8483 (2019).

    Article  CAS  Google Scholar 

  16. Kamarudheen, R., Aalbers, G/ J. W., Hamans, R. F., Kamp, L. P. J. & Baldi, A. Distinguishing among all possible activation mechanisms of a plasmon-driven chemical reaction. ACS Energy Lett. 5, 2605–2613 (2020).

    Article  CAS  Google Scholar 

  17. Baffou, G., Bordacchini, I., Baldi, A. & Quidant, R. Simple experimental procedures to distinguish photothermal from hot-carrier processes in plasmonics. Light Sci. Appl. 9, 108 (2020).

    Article  Google Scholar 

  18. Kazuma, E., Jung, J., Ueba, H., Trenary, M. & Kim, Y. Real-space and real-time observation of a plasmon-induced chemical reaction of a single molecule. Science 360, 521–526 (2018).

    Article  CAS  Google Scholar 

  19. Brandt, N. C., Keller, E. L. & Frontiera, R. R. Ultrafast surface-enhanced Raman probing of the role of hot electrons in plasmon-driven chemistry. J. Phys. Chem. Lett. 7, 3179–3185 (2016).

    Article  CAS  Google Scholar 

  20. Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. Nat. Commun. 7, 10545 (2016).

    Article  CAS  Google Scholar 

  21. Tan, S. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photon. 11, 806–812 (2017).

    Article  CAS  Google Scholar 

  22. Hervier, A., Renzas, J. R., Park, J. Y. & Somorjai, G. A. Hydrogen oxidation-driven hot electron flow detected by catalytic nanodiodes. Nano Lett. 9, 3930–3933 (2009).

    Article  CAS  Google Scholar 

  23. Zheng, Z., Tachikawa, T. & Majima, T. Plasmon-enhanced formic acid dehydrogenation using anisotropic Pd–Au nanorods studied at the single-particle level. J. Am. Chem. Soc. 137, 948–957 (2015).

    Article  CAS  Google Scholar 

  24. Jain, P. K. Taking the heat off of plasmonic chemistry. J. Phys. Chem. C 123, 24347–24351 (2019).

    Article  CAS  Google Scholar 

  25. Cortés, E. et al. Plasmonic hot electron transport drives nano-localized chemistry. Nat. Commun. 8, 14880 (2017).

    Article  Google Scholar 

  26. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    Article  CAS  Google Scholar 

  27. Vadai, M., Angell, D. K., Hayee, F., Sytwu, K. & Dionne, J. A. In-situ observation of plasmon-controlled photocatalytic dehydrogenation of individual palladium nanoparticles. Nat. Commun. 9, 4658 (2018).

    Article  Google Scholar 

  28. Szczerbiński, J., Gyr, L., Kaeslin, J. & Zenobi, R. Plasmon-driven photocatalysis leads to products known from E-beam and X-ray-induced surface chemistry. Nano Lett. 18, 6740–6749 (2018).

    Article  Google Scholar 

  29. Kontoleta, E. et al. Using hot electrons and hot holes for simultaneous cocatalyst deposition on plasmonic nanostructures. ACS Appl. Mater. Interfaces 12, 35986–35994 (2020).

    Article  CAS  Google Scholar 

  30. Zhou, L. et al. Light-driven methane dry reforming with single atomic site antenna-reactor plasmonic photocatalysts. Nat. Energy 5, 61–70 (2020).

    Article  CAS  Google Scholar 

  31. Kamarudheen, R., Kumari, G. & Baldi, A. Plasmon-driven synthesis of individual metal@semiconductor core@shell nanoparticles. Nat. Commun. 11, 3957 (2020).

    Article  CAS  Google Scholar 

  32. Moreau, A. et al. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 492, 86–89 (2012).

    Article  CAS  Google Scholar 

  33. Hövel, H., Fritz, S., Hilger, A., Kreibig, U. & Vollmer, M. Width of cluster plasmon resonances: bulk dielectric functions and chemical interface damping. Phys. Rev. B 48, 18178–18188 (1993).

    Article  Google Scholar 

  34. Zijlstra, P., Paulo, P. M. R., Yu, K., Xu, Q.-H. & Orrit, M. Chemical interface damping in single gold nanorods and its near elimination by tip-specific functionalization. Angew. Chem. Int. Ed. 51, 8352–8355 (2012).

    Article  CAS  Google Scholar 

  35. Hoggard, A. et al. Using the plasmon linewidth to calculate the time and efficiency of electron transfer between gold nanorods and graphene. ACS Nano 7, 11209–11217 (2013).

    Article  CAS  Google Scholar 

  36. Lee, S. Y. et al. Tuning chemical interface damping: interfacial electronic effects of adsorbate molecules and sharp tips of single gold bipyramids. Nano Lett. 19, 2568–2574 (2019).

    Article  CAS  Google Scholar 

  37. Liyanage, T., Nagaraju, M., Johnson, M., Muhoberac, B. B. & Sardar, R. Reversible tuning of the plasmoelectric effect in noble metal nanostructures through manipulation of organic ligand energy levels. Nano Lett. 20, 192–200 (2020).

    Article  CAS  Google Scholar 

  38. Foerster, B. et al. Chemical interface damping depends on electrons reaching the surface. ACS Nano 11, 2886–2893 (2017).

    Article  CAS  Google Scholar 

  39. Foerster, B., Spata, V. A., Carter, E. A., Sönnichsen, C. & Link, S. Plasmon damping depends on the chemical nature of the nanoparticle interface. Sci. Adv. 5, eaav0704 (2019).

    Article  CAS  Google Scholar 

  40. Therrien, A. J. et al. Impact of chemical interface damping on surface plasmon dephasing. Faraday Discuss. 214, 59–72 (2019).

    Article  CAS  Google Scholar 

  41. Xomalis, A. et al. Controlling optically driven atomic migration using crystal-facet control in plasmonic nanocavities. ACS Nano 14, 10562–10568 (2020).

    Article  CAS  Google Scholar 

  42. Chikkaraddy, R. et al. How ultranarrow gap symmetries control plasmonic nanocavity modes: from cubes to spheres in the nanoparticle-on-mirror. ACS Photon. 4, 469–475 (2017).

    Article  CAS  Google Scholar 

  43. Christensen, N. E. & Seraphin, B. O. Relativistic band calculation and the optical properties of gold. Phys. Rev. B 4, 3321–3344 (1971).

    Article  Google Scholar 

  44. Moran, C. H., Rycenga, M., Zhang, Q. & Xia, Y. Replacement of poly(vinyl pyrrolidone) by thiols: a systematic study of Ag nanocube functionalization by surface-enhanced Raman scattering. J. Phys. Chem. C 115, 21852–21857 (2011).

    Article  CAS  Google Scholar 

  45. Linic, S., Chavez, S. & Elias, R. Flow and extraction of energy and charge carriers in hybrid plasmonic nanostructures. Nat. Mater. 20, 916–924 (2021).

    Article  CAS  Google Scholar 

  46. Negre, C. F. A. & Sánchez, C. G. Effect of molecular adsorbates on the plasmon resonance of metallic nanoparticles. Chem. Phys. Lett. 494, 255–259 (2010).

    Article  CAS  Google Scholar 

  47. Boerigter, C., Aslam, U. & Linic, S. Mechanism of charge transfer from plasmonic nanostructures to chemically attached materials. ACS Nano 10, 6108–6115 (2016).

    Article  CAS  Google Scholar 

  48. and, P. A. & Walkup, R. E. Fundamental mechanisms of desorption and fragmentation induced by electronic transitions at surfaces. Annu. Rev. Phys. Chem. 40, 173–206 (1989).

    Article  Google Scholar 

  49. Bonn, M. et al. Phonon-versus electron-mediated desorption and oxidation of CO on Ru(0001). Science 285, 1042–1045 (1999).

    Article  CAS  Google Scholar 

  50. Thomas, A. et al. Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363, 615–619 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Kuster for software development and support, and L. Leppert and T. B. de Queiroz for helpful discussions. This work was supported by the Dutch Research Council (NWO). I.S., A.X., J.J.B. and A.F.K. acknowledge support from the European Research Council (ERC) under the Horizon 2020 Research and Innovation Programme THOR (grant agreement no. 829067), PICOFORCE (grant agreement no. 883703) and POSEIDON (grant agreement no. 861950). J.J.B. acknowledges funding from the EPSRC (Cambridge NanoDTC EP/L015978/1, EP/L027151/1, EP/S022953/1, EP/P029426/1 and EP/R020965/1). A.B. acknowledges support from the Dutch Research Council (NWO) via the Vidi award 680-47-550.

Author information

Authors and Affiliations

Authors

Contributions

E.C.G., E.O. and A.B. conceived the experiments. I.S., A.X., J.J.B. and A.F.K. performed the SERS measurements. E.O. fabricated the samples, performed the optical measurement, conducted the electromagnetic simulations, produced the electron microscopy images and analysed the data. E.C.G. and E.O. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Erik C. Garnett.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Suljo Linic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–7 and Figs. 1–14.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oksenberg, E., Shlesinger, I., Xomalis, A. et al. Energy-resolved plasmonic chemistry in individual nanoreactors. Nat. Nanotechnol. 16, 1378–1385 (2021). https://doi.org/10.1038/s41565-021-00973-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00973-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing