Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations


Atomically dispersed metal catalysts maximize atom efficiency and display unique catalytic properties compared with regular metal nanoparticles. However, achieving high reactivity while preserving high stability at appreciable loadings remains challenging. Here we solve the challenge by synergizing metal–support interactions and spatial confinement, which enables the fabrication of highly loaded atomic nickel (3.1 wt%) along with dense atomic copper grippers (8.1 wt%) on a graphitic carbon nitride support. For the semi-hydrogenation of acetylene in excess ethylene, the fabricated catalyst shows extraordinary catalytic performance in terms of activity, selectivity and stability—far superior to supported atomic nickel alone in the absence of a synergizing effect. Comprehensive characterization and theoretical calculations reveal that the active nickel site confined in two stable hydroxylated copper grippers dynamically changes by breaking the interfacial nickel–support bonds on reactant adsorption and making these bonds on product desorption. Such a dynamic effect confers high catalytic performance, providing an avenue to rationally design efficient, stable and highly loaded, yet atomically dispersed, catalysts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Catalytic performance of Ni–Cu pincer complex catalyst.
Fig. 2: Structural characterization.
Fig. 3: In situ DRIFTS investigation of C2H2 hydrogenation.
Fig. 4: Theoretical insights into stability and hydrogenation mechanism.

Data availability

Source data are provided with this paper. The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Wang, A. Q., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  2. 2.

    Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    CAS  Google Scholar 

  3. 3.

    Marcinkowski, M. D. et al. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat. Chem. 10, 325–332 (2018).

    CAS  Google Scholar 

  4. 4.

    Akri, M. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 10, 5181 (2019).

    Google Scholar 

  5. 5.

    Kaiser, S. K. et al. Nanostructuring unlocks high performance of platinum single-atom catalysts for stable vinyl chloride production. Nat. Catal. 3, 376–385 (2020).

    CAS  Google Scholar 

  6. 6.

    Barbier, J. Deactivation of reforming catalysts by coking—a review. Appl. Catal. 23, 225–243 (1986).

    CAS  Google Scholar 

  7. 7.

    Gates, B. C., Flytzani-Stephanopoulos, M., Dixon, D. A. & Katz, A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal. Sci. Technol. 7, 4259–4275 (2017).

    CAS  Google Scholar 

  8. 8.

    Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    CAS  Google Scholar 

  9. 9.

    Huang, F. et al. Anchoring Cu1 species over nanodiamond-graphene for semi-hydrogenation of acetylene. Nat. Commun. 10, 4431 (2019).

    Google Scholar 

  10. 10.

    Studt, F. et al. Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene. Science 320, 1320–1322 (2008).

    CAS  Google Scholar 

  11. 11.

    Huang, X. et al. Enhancing both selectivity and coking-resistance of a single-atom Pd1/C3N4 catalyst for acetylene hydrogenation. Nano Res. 10, 1302–1312 (2017).

    CAS  Google Scholar 

  12. 12.

    Han, B. et al. Strong metal–support interactions between Pt single atoms and TiO2. Angew. Chem. Int. Ed. 59, 11824–11829 (2020).

    CAS  Google Scholar 

  13. 13.

    Lang, R. et al. Single-atom catalysts based on the metal–oxide interaction. Chem. Rev. 120, 11986–12043 (2020).

    CAS  Google Scholar 

  14. 14.

    Liu, L. & Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 6, 244–263 (2021).

  15. 15.

    Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

    CAS  Google Scholar 

  16. 16.

    Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  Google Scholar 

  17. 17.

    Wei, S. et al. Direct observation of noble metal nanoparticles transforming to thermally stable single atoms. Nat. Nanotechnol. 13, 856–861 (2018).

    CAS  Google Scholar 

  18. 18.

    Mitchell, S., Qin, R., Zheng, N. & Perez-Ramirez, J. Nanoscale engineering of catalytic materials for sustainable technologies. Nat. Nanotechnol., 16, 129–139 (2021).

  19. 19.

    Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    CAS  Google Scholar 

  20. 20.

    Li, Z. et al. Well-defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites. Chem. Rev. 120, 623–682 (2020).

    CAS  Google Scholar 

  21. 21.

    Thomas, A. et al. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 18, 4893–4908 (2008).

    CAS  Google Scholar 

  22. 22.

    Gao, G. P., Jiao, Y., Waclawik, E. R. & Du, A. J. Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide. J. Am. Chem. Soc. 138, 6292–6297 (2016).

    CAS  Google Scholar 

  23. 23.

    Lu, J. L., Elam, J. W. & Stair, P. C. Atomic layer deposition—sequential self-limiting surface reactions for advanced catalyst ‘bottom-up’ synthesis. Surf. Sci. Rep. 71, 410–472 (2016).

    CAS  Google Scholar 

  24. 24.

    George, S. M. Atomic layer deposition: an overview. Chem. Rev. 110, 111–131 (2010).

    CAS  Google Scholar 

  25. 25.

    Gould, T. D. et al. Synthesis of supported Ni catalysts by atomic layer deposition. J. Catal. 303, 9–15 (2013).

    CAS  Google Scholar 

  26. 26.

    Huo, J. S., Solanki, R. & McAndrew, J. Characteristics of copper films produced via atomic layer deposition. J. Mater. Res. 17, 2394–2398 (2002).

    CAS  Google Scholar 

  27. 27.

    Selander, N. & Szabo, K. J. Catalysis by palladium pincer complexes. Chem. Rev. 111, 2048–2076 (2011).

    CAS  Google Scholar 

  28. 28.

    Borodziński, A. & Bond, G. C. Selective hydrogenation of ethyne in ethene-rich streams on palladium catalysts. Part 1. Effect of changes to the catalyst during reaction. Catal. Rev. 48, 91–144 (2006).

  29. 29.

    Liu, L., Zhao, C. & Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2–x nanoparticles at room temperature. J. Phys. Chem. C. 116, 7904–7912 (2012).

    CAS  Google Scholar 

  30. 30.

    Huang, L., Peng, F. & Ohuchi, F. S. ‘In situ’ XPS study of band structures at Cu2O/TiO2 heterojunctions interface. Surf. Sci. 603, 2825–2834 (2009).

    CAS  Google Scholar 

  31. 31.

    Biesinger, M. C., Payne, B. P., Lau, L. W. M., Gerson, A. & Smart, R. S. C. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems. Surf. Interface Anal. 41, 324–332 (2009).

    CAS  Google Scholar 

  32. 32.

    Cao, L. et al. Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution. Nat. Catal. 2, 134–141 (2018).

    Google Scholar 

  33. 33.

    Moon, J. et al. Discriminating the role of surface hydride and hydroxyl for acetylene semihydrogenation over ceria through in situ neutron and infrared spectroscopy. ACS Catal. 10, 5278–5287 (2020).

    CAS  Google Scholar 

  34. 34.

    Tian, S. et al. Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat. Commun. 9, 2353 (2018).

    Google Scholar 

  35. 35.

    Lu, Z. et al. An isolated zinc–cobalt atomic pair for highly active and durable oxygen reduction. Angew. Chem. Int. Ed. 58, 2622–2626 (2019).

    CAS  Google Scholar 

  36. 36.

    Kwak, J. H. et al. Molecular active sites in heterogeneous Ir–La/C-catalyzed carbonylation of methanol to acetates. J. Phys. Chem. Lett. 5, 566–572 (2014).

    CAS  Google Scholar 

  37. 37.

    Chai, Y. et al. Acetylene-selective hydrogenation catalyzed by cationic nickel confined in zeolite. J. Am. Chem. Soc. 141, 9920–9927 (2019).

    CAS  Google Scholar 

  38. 38.

    Dai, X. et al. Single Ni sites distributed on N-doped carbon for selective hydrogenation of acetylene. Chem. Commun. 53, 11568–11571 (2017).

    CAS  Google Scholar 

  39. 39.

    Shi, X. X. et al. Copper catalysts in semihydrogenation of acetylene: from single atoms to nanoparticles. ACS Catal. 10, 3495–3504 (2020).

    CAS  Google Scholar 

  40. 40.

    Huang, F. et al. Atomically dispersed Pd on nanodiamond/graphene hybrid for selective hydrogenation of acetylene. J. Am. Chem. Soc. 140, 13142–13146 (2018).

    CAS  Google Scholar 

  41. 41.

    Feng, Q. et al. Mesoporous nitrogen-doped carbon-nanosphere-supported isolated single-atom Pd catalyst for highly efficient semihydrogenation of acetylene. Adv. Mater. 31, e1901024 (2019).

    Google Scholar 

  42. 42.

    Pei, G. X. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 5, 3717–3725 (2015).

    CAS  Google Scholar 

  43. 43.

    Pei, G. X. et al. Promotional effect of Pd single atoms on Au nanoparticles supported on silica for the selective hydrogenation of acetylene in excess ethylene. New J. Chem. 38, 2043–2051 (2014).

    CAS  Google Scholar 

  44. 44.

    Cao, Y. et al. Adsorption site regulation to guide atomic design of Ni–Ga catalysts for acetylene semi-hydrogenation. Angew. Chem. Int. Ed. 59, 11647–11652 (2020).

  45. 45.

    Liu, Y. et al. Intermetallic NixMy (M = Ga and Sn) nanocrystals: a non-precious metal catalyst for semi-hydrogenation of alkynes. Adv. Mater. 28, 4747–4754 (2016).

    CAS  Google Scholar 

  46. 46.

    Armbrüster, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 11, 690–693 (2012).

    Google Scholar 

  47. 47.

    Zhou, H. R. et al. PdZn intermetallic nanostructure with Pd–Zn–Pd ensembles for highly active and chemoselective semi-hydrogenation of acetylene. ACS Catal. 6, 1054–1061 (2016).

    CAS  Google Scholar 

  48. 48.

    Armbrüster, M., Wowsnick, G., Friedrich, M., Heggen, M. & Cardoso-Gil, R. Synthesis and catalytic properties of nanoparticulate intermetallic Ga–Pd compounds. J. Am. Chem. Soc. 133, 9112–9118 (2011).

    Google Scholar 

  49. 49.

    Liu, Y. N. et al. Layered double hydroxide-derived Ni-Cu nanoalloy catalysts for semi-hydrogenation of alkynes: improvement of selectivity and anti-coking ability via alloying of Ni and Cu. J. Catal. 359, 251–260 (2018).

    CAS  Google Scholar 

  50. 50.

    Chen, Y. J. & Chen, J. X. Selective hydrogenation of acetylene on SiO2 supported Ni-In bimetallic catalysts: promotional effect of In. Appl. Surf. Sci. 387, 16–27 (2016).

    CAS  Google Scholar 

  51. 51.

    de la Peña, F. et al. hyperspy/hyperspy: HyperSpy v.1.5.2 (Zenodo, 2019).

  52. 52.

    Zhou, Z. et al. The vacuum ultraviolet beamline/endstations at NSRL dedicated to combustion research. J. Synchrotron Rad. 23, 1035–1045 (2016).

    CAS  Google Scholar 

  53. 53.

    Luo, L. F. et al. Gas-phase reaction network of Li/MgO-catalyzed oxidative coupling of methane and oxidative dehydrogenation of ethane. ACS Catal. 9, 2514–2520 (2019).

    CAS  Google Scholar 

  54. 54.

    Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

    CAS  Google Scholar 

  55. 55.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  56. 56.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  57. 57.

    Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Google Scholar 

  58. 58.

    Henkelman, G., Uberuaga, B. P. & Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

Download references


This work was supported by the National Key R&D Program of China (2018YFA0208603 and 2017YFA0402800); the National Natural Science Foundation of China (22025205, 21673215, 91645202, 91845203, 11621063 and 91945302); the Frontier Science Key Project of the Chinese Academy of Sciences (CAS) (QYZDJ-SSW-SLH054); the Dalian National Laboratory for Clean Energy (DNL) Cooperation Fund (DNL201907 and DNL201920); Beijing Outstanding Young Scientist Program (BJJWZYJH01201914430039); Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-JSC019); Bureau of Frontier of Sciences and Education, CAS (ZDBS-LY-SLH003); the Fundamental Research Funds for the Central Universities (WK2060030029 and WK3430000005); Users with Excellence Program of Hefei Science Center, CAS (2019HSC-UE016); and the Max Planck Partner Group. We also gratefully thank the BL14W1 beamline at the Shanghai Synchrotron Radiation Facility (SSRF), and the BL10B and BL04B beamlines at the National Synchrotron Radiation Laboratory (NSRL), China, and the Supercomputing Center, University of Science and Technology of China.

Author information




J.L. designed the experiments and W.-X.L. designed the DFT calculations. J.G. performed the catalytic performance evaluation. S.W., L.H., Z.S., L.C. and S.C. performed the XAFS measurements. M.J. performed the DFT calculations. Y.P., J.Y. and W.W. performed the SVUV-PIMS measurements. Y.L. conducted the HAADF-STEM measurements. A.L. and W.Z. performed the atomic-resolution EELS measurements. H.-J.W., X.L. and L.W. performed the TEM measurements. X.S. and X.H. performed the TGA measurements. X.Z., H.P. and J.Z. performed the XPS measurements. J.L. and W.-X.L. co-wrote the manuscript, and all the authors contributed to the overall scientific interpretation and edited the manuscript. We gratefully thank P. C. Stair for his insightful suggestions and manuscript polishing.

Corresponding authors

Correspondence to Shiqiang Wei, Wei-Xue Li or Junling Lu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Dehui Deng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46 and Tables 1–12.

Supplementary Data 1

This compressed file contains source data for Supplementary Figs. 1–46 and Tables 1–12.

Supplementary Video 1

Hydrogenation of C2H2 on Ni1Cu2.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Jian, M., Huang, L. et al. Synergizing metal–support interactions and spatial confinement boosts dynamics of atomic nickel for hydrogenations. Nat. Nanotechnol. 16, 1141–1149 (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research