Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fluorinated interphase enables reversible aqueous zinc battery chemistries

Abstract

Metallic zinc is an ideal anode due to its high theoretical capacity (820 mAh g−1), low redox potential (−0.762 V versus the standard hydrogen electrode), high abundance and low toxicity. When used in aqueous electrolyte, it also brings intrinsic safety, but suffers from severe irreversibility. This is best exemplified by low coulombic efficiency, dendrite growth and water consumption. This is thought to be due to severe hydrogen evolution during zinc plating and stripping, hitherto making the in-situ formation of a solid–electrolyte interphase (SEI) impossible. Here, we report an aqueous zinc battery in which a dilute and acidic aqueous electrolyte with an alkylammonium salt additive assists the formation of a robust, Zn2+-conducting and waterproof SEI. The presence of this SEI enables excellent performance: dendrite-free zinc plating/stripping at 99.9% coulombic efficiency in a Ti||Zn asymmetric cell for 1,000 cycles; steady charge–discharge in a Zn||Zn symmetric cell for 6,000 cycles (6,000 h); and high energy densities (136 Wh kg−1 in a Zn||VOPO4 full battery with 88.7% retention for >6,000 cycles, 325 Wh kg−1 in a Zn||O2 full battery for >300 cycles and 218 Wh kg−1 in a Zn||MnO2 full battery with 88.5% retention for 1,000 cycles) using limited zinc. The SEI-forming electrolyte also allows the reversible operation of an anode-free pouch cell of Ti||ZnxVOPO4 at 100% depth of discharge for 100 cycles, thus establishing aqueous zinc batteries as viable cell systems for practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrochemical properties of different electrolytes.
Fig. 2: SEM and TEM imaging of Zn metal after 50 plating/stripping cycles in different electrolytes in a Zn||Zn symmetric cell at 0.5 mA cm−2 and 0.25 mAh cm−2.
Fig. 3: XPS spectra of F1s and C1s for Zn metal after 50 plating/stripping cycles in 4 m Zn(OTF)2 + 0.5 m Me3EtNOTF at a current density of 0.5 mA cm−2.
Fig. 4: Proposed mechanism demonstrating synergistic reactions between triflate and trimethylethyl ammonium to deposit predominantly fluoride and carbonate-based SEI.
Fig. 5: Electrochemical performances of Zn–oxygen and Zn-ion batteries.
Fig. 6: Fabrication and electrochemical performances of aritificial ZnF2 SEI.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Turcheniuk, K., Bondarev, D., Singhal, V. & Yushin, G. Ten years left to redesign lithium-ion batteries. Nature 559, 467–470 (2018).

    Article  CAS  Google Scholar 

  2. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  3. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    Article  CAS  Google Scholar 

  4. Parker, J. F. et al. Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion. Science 356, 415–418 (2017).

    Article  CAS  Google Scholar 

  5. Zheng, J. & Archer, L. A. Controlling electrochemical growth of metallic zinc electrodes: toward affordable rechargeable energy storage systems. Sci. Adv. 7, eabe0219 (2021).

    Article  CAS  Google Scholar 

  6. Kundu, D. et al. Aqueous vs. nonaqueous Zn-ion batteries: consequences of the desolvation penalty at the interface. Ener. Env. Sci. 11, 881–892 (2018).

    Article  CAS  Google Scholar 

  7. Bayer, M. et al. Influence of water content on the surface morphology of zinc deposited from EMImOTf/water mixtures. J. Electrochem. Soc. 166, A909–A914 (2019).

    Article  CAS  Google Scholar 

  8. Higashi, S., Lee, S. W., Lee, J. S., Takechi, K. & Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016).

    Article  Google Scholar 

  9. Zhao, Z. et al. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12, 1938–1949 (2019).

    Article  CAS  Google Scholar 

  10. Zhang, L. et al. ZnCl2 ‘water-in-salt’ electrolyte transforms the performance of vanadium oxide as a Zn battery cathode. Adv. Funct. Mater. 29, 1902653 (2019).

    Article  CAS  Google Scholar 

  11. Luo, M. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 574, 81–85 (2019).

    Article  CAS  Google Scholar 

  12. Fu, J. et al. Electrically rechargeable zinc–air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017).

    Article  CAS  Google Scholar 

  13. Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020).

    Article  CAS  Google Scholar 

  14. Zhang, C. et al. A ZnCl2 water-in-salt electrolyte for a reversible Zn metal anode. Chem. Commun. 54, 14097–14099 (2018).

    Article  CAS  Google Scholar 

  15. Zhang, Q. et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020).

    Article  CAS  Google Scholar 

  16. Xie, X. et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020).

    Article  CAS  Google Scholar 

  17. Qiu, H. et al. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 10, 5374 (2019).

    Article  CAS  Google Scholar 

  18. Cao, L., Li, D., Deng, T., Li, Q. & Wang, C. Hydrophobic organic-electrolyte-protected zinc anodes for aqueous zinc batteries. Angew. Chem. Int. Ed. 59, 19292–19296 (2020).

    Article  CAS  Google Scholar 

  19. Suo, L. et al. ‘Water-in-salt’ electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350, 938–943 (2015).

    Article  CAS  Google Scholar 

  20. Sun, W. et al. A rechargeable zinc–air battery based on zinc peroxide chemistry. Science 371, 46–51 (2021).

    Article  CAS  Google Scholar 

  21. Liu, Z. et al. Interfacial study on solid electrolyte interphase at Li metal anode: implication for Li dendrite growth. J. Electrochem. Soc. 163, A592–A598 (2016).

    Article  CAS  Google Scholar 

  22. Nie, M. et al. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 117, 25381–25389 (2013).

    Article  CAS  Google Scholar 

  23. Cao, X. et al. Monolithic solid-electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  24. Winiarski, J., Tylus, W., Winiarska, K., Szczygieł, I. & Szczygieł, B. XPS and FT-IR characterization of selected synthetic corrosion products of zinc expected in neutral environment containing chloride ions. J. Spectrosc. 2018, 1–14 (2018).

    Article  CAS  Google Scholar 

  25. Suo, L. et al. ‘Water-in-salt’ electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7, 1701189 (2017).

    Article  CAS  Google Scholar 

  26. Chen, Y., Cao, Y., Shi, Y., Xue, Z. & Mu, T. Quantitative research on the vaporization and decomposition of [EMIM][Tf2N] by thermogravimetric analysis–mass spectrometry. Ind. Eng. Chem. Res. 51, 7418–7427 (2012).

    Article  CAS  Google Scholar 

  27. Kroon, M. C., Buijs, W., Peters, C. J. & Witkamp, G.-J. Decomposition of ionic liquids in electrochemical processing. Green Chem. 8, 241–245 (2006).

    Article  CAS  Google Scholar 

  28. Markevich, E. et al. In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes. Electrochim. Acta 55, 2687–2696 (2010).

    Article  CAS  Google Scholar 

  29. Preibisch, Y., Horsthemke, F., Winter, M., Nowak, S. & Best, A. S. Is the cation innocent? An analytical approach on the cationic decomposition behavior of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide in contact with lithium metal. Chem. Mater. https://doi.org/10.1021/acs.chemmater.9b04827 (2020).

  30. Chowdhury, F. A., Yamada, H., Higashii, T., Goto, k & Onoda, M. CO2 capture by tertiary amine absorbents: a performance comparison study. Ind. Eng. Chem. Res. 52, 8323–8331 (2013).

    Article  CAS  Google Scholar 

  31. Kortunov, P. V., Siskin, M., Paccagnini, M. & Thomann, H. CO2 reaction mechanisms with hindered alkanolamines: control and promotion of reaction pathways. Energy Fuels 30, 1223–1236 (2016).

    CAS  Google Scholar 

  32. Yi, Y. et al. Instability at the electrode/electrolyte interface induced by hard cation chelation and nucleophilic attack. Chem. Mater. 29, 8504–8512 (2017).

    Article  CAS  Google Scholar 

  33. Nicolas, D. et al. The role of the hydrogen evolution reaction in the solid-electrolyte interphase formation mechanism for ‘water-in-salt’ electrolytes. Energy Environ. Sci. 11, 3491–3499 (2018).

    Article  Google Scholar 

  34. Cao, C.-N. On the impedance plane displays for irreversible electrode reactions based on the stability conditions of the steady-state. I. One state variable besides electrode potential. Electrochim. Acta 35, 831–836 (1990).

    Article  CAS  Google Scholar 

  35. Zhang, D., Li, L., Cao, L., Yang, N. & Huang, C. Studies of corrosion inhibitors for zinc–manganese batteries: quinoline quaternary ammonium phenolates. Corros. Sci. 43, 1627–1636 (2001).

    Article  CAS  Google Scholar 

  36. McKubre, M. C. H. & Macdonald, D. D. The dissolution and passivation of zinc in concentrated aqueous hydroxide. J. Electrochem. Soc. 128, 524–530 (1981).

    Article  CAS  Google Scholar 

  37. Parker, J. F., Ko, J. S., Rolison, D. R. & Long, J. W. Translating materials-level performance into device-relevant metrics for zinc-based batteries. Joule 2, 2519–2527 (2018).

    Article  CAS  Google Scholar 

  38. Liu, L. et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett. 4, 1650–1657 (2019).

    Article  CAS  Google Scholar 

  39. Yamamoto, N., Okuhara, T. & Nakato, T. Intercalation compound of VOPO4·2H2O with acrylamide: preparation and exfoliation. J. Mater. Chem. 11, 1858–1863 (2001).

    Article  CAS  Google Scholar 

  40. Wang, F. et al. How water accelerates bivalent ion diffusion at the electrolyte/electrode interface. Angew. Chem. Int. Ed. 57, 11978–11981 (2018).

    Article  CAS  Google Scholar 

  41. Horng, P., Brindza, M. R., Walker, R. A. & Fourkas, J. T. Behavior of organic liquids at bare and modified silica interfaces. J. Phys. Chem. C 114, 394–402 (2010).

    Article  CAS  Google Scholar 

  42. Frisch, M. J. et al. Gaussian 16, Revision C.01 (Gaussian, Inc., 2016).

  43. Frisch, M. J., Pople, J. A. & Binkley, J. S. Self-consistent molecular orbital methods. 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    Article  CAS  Google Scholar 

  44. Zhao, Y., Schultz, N. E. & Truhlar, D. G. Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J. Chem. Theory Comput. 2, 364–382 (2006).

    Article  CAS  Google Scholar 

  45. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  46. Chai, J.-D. & Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10, 6615–6620 (2008).

    Article  CAS  Google Scholar 

  47. Montgomer, J. A. Jr., Frisch, M. J., Ochterski, J. W. & Petersson, G. A. A complete basis set model chemistry. VI. Use of density functional geometries and frequencies. J. Chem. Phys. 110, 2822–2827 (1999).

    Article  Google Scholar 

  48. Scalmani, G. & Frisch, M. J. Continuous surface charge polarizable continuum models of solvation. I. General formalism. J. Chem. Phys. 132, 114110 (2010).

    Article  CAS  Google Scholar 

  49. Martyna, G. J., Tuckerman, M. E., Tobias, D. J. & Klein, M. L. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).

    Article  CAS  Google Scholar 

  50. Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  51. Borodin, O. Polarizable force field development and molecular dynamics simulations of ionic liquids. J. Phys. Chem. B 113, 11463–11478 (2009).

    Article  CAS  Google Scholar 

  52. Thole, B. T. Molecular polarizabilities calculated with a modified dipole interaction. Chem. Phys. 59, 341–350 (1981).

    Article  CAS  Google Scholar 

  53. Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 102, 511–524 (1995).

    Article  CAS  Google Scholar 

  54. Reed, S. K., Lanning, O. J. & Madden, P. A. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys. 126, 084704 (2007).

    Article  CAS  Google Scholar 

  55. Vatamanu, J., Borodin, O. & Smith, G. D. Molecular dynamics simulations of atomically flat and nanoporous electrodes with a molten salt electrolyte. Phys. Chem. Chem. Phys. 12, 170–182 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.W. acknowledges funding support from the US Department of Energy (DOE) through ARPA-E grant DEAR0000389 and the Center of Research on Extreme Batteries. Modelling and experimental work at Army Research Laboratory was supported by the Joint Center for Energy Storage Research, an Energy Innovation Hub funded by the US Department of Energy under cooperative agreement no. W911NF-19-2-0046. E.H. and X.-Q.Y. are supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Vehicle Technology Office of the US DOE through the Advanced Battery Materials Research Program under contract no. DE-SC0012704. This research used beamline 7-BM of the National Synchrotron Light Source II, a US DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DESC0012704.

Author information

Authors and Affiliations

Authors

Contributions

L. Cao and D.L. designed the experiments and analysed data. K.X. synthesized the asymmetric ammonium salt. T.P., O.B. and J.V. conducted the calculations. T.D., C.Y., L. Chen, L.M., Q.L. and S.H. assisted with the material synthesis and characterizations. E.H. and X.-Q.Y. did X-ray absorption spectroscopy measurement and data analysis. M.D. performed conductivity and differential scanning calorimetry measurements. K.G. assisted with XPS analysis. M.J.H. and J.T.F. assisted with contact-angle testing. K.X., O.B. and C.W. conceived and supervised the project. All authors contributed to interpretation of the results.

Corresponding authors

Correspondence to Kang Xu, Oleg Borodin or Chunsheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–46, Tables 1–5 and notes 1–2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Li, D., Pollard, T. et al. Fluorinated interphase enables reversible aqueous zinc battery chemistries. Nat. Nanotechnol. 16, 902–910 (2021). https://doi.org/10.1038/s41565-021-00905-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00905-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing