Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output

Abstract

Environmentally adaptive power generation is attractive for the development of next-generation energy sources. Here we develop a heterogeneous moisture-enabled electric generator (HMEG) based on a bilayer of polyelectrolyte films. Through the spontaneous adsorption of water molecules in air and induced diffusion of oppositely charged ions, one single HMEG unit can produce a high voltage of ~0.95 V at low (25%) relative humidity (RH), and even jump to 1.38 V at 85% RH. A sequentially aligned stacking strategy is created for large-scale integration of HMEG units, to offer a voltage of more than 1,000 V under ambient conditions (25% RH, 25 °C). Using origami assembly, a small section of folded HMEGs renders an output of up to 43 V cm−3. Such integration devices supply sufficient power to illuminate a lamp bulb of 10 W, to drive a dynamic electronic ink screen and to control the gate voltage for a self-powered field effect transistor.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biomimetic principle and structure of the BPF.
Fig. 2: Electric generation of a HMEG unit.
Fig. 3: Working mechanism of HMEG.
Fig. 4: Integration of HEMG units.
Fig. 5: Demonstration of the HMEG as a practical power source.
Fig. 6: Self-powered FET.

Data availability

The data that support the findings of this paper are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Xu, W. H. et al. A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020).

    CAS  Article  Google Scholar 

  2. 2.

    Liu, X. M. et al. Power generation from ambient humidity using protein nanowires. Nature 578, 550–554 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    Xue, G. B. et al. Water-evaporation-induced electricity with nanostructured carbon materials. Nat. Nanotechnol. 12, 317–321 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Yin, J. et al. Generating electricity by moving a droplet of ionic liquid along graphene. Nat. Nanotechnol. 9, 378–383 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Cheng, H. H. et al. Spontaneous power source in ambient air of a well-directionally reduced graphene oxide bulk. Energy Environ. Sci. 11, 2839–2845 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Bai, J. X., Huang, Y. X., Cheng, H. H. & Qu, L. T. Moist-electric generation. Nanoscale 11, 23083–23091 (2019).

    Google Scholar 

  7. 7.

    Xu, T., Han, Q., Cheng, Z. H., Zhang, J. & Qu, L. T. Interactions between graphene-based materials and water molecules toward actuator and electricity-generator applications. Small Methods 2, 1800108 (2018).

    Article  CAS  Google Scholar 

  8. 8.

    Zhao, F., Cheng, H. H., Zhang, Z. P., Jiang, L. & Qu, L. T. Direct power generation from a graphene oxide film under moisture. Adv. Mater. 27, 4351–4357 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Zhao, F., Liang, Y., Cheng, H. H., Jiang, L. & Qu, L. T. Highly efficient moisture-enabled electricity generation from graphene oxide frameworks. Energy Environ. Sci. 9, 912–916 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Zhao, F., Wang, L. X., Zhao, Y., Qu, L. T. & Dai, L. M. Graphene oxide nanoribbon assembly toward moisture powered information storage. Adv. Mater. 29, 1604972 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Li, M. J. et al. Biological nanofibrous generator for electricity harvest from moist air flow. Adv. Funct. Mater. 29, 1901798 (2019).

    Article  CAS  Google Scholar 

  12. 12.

    Xue, J. L. et al. Vapor-activated power generation on conductive polymer. Adv. Funct. Mater. 26, 8784–8792 (2016).

    CAS  Article  Google Scholar 

  13. 13.

    Huang, Y. X. et al. Interface-mediated hygroelectric generator with an output voltage approaching 1.5 volts. Nat. Commun. 9, 4166 (2018).

    Article  CAS  Google Scholar 

  14. 14.

    Xu, T. et al. An efficient polymer moist-electric generator. Energy Environ. Sci. 12, 972–978 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Huang, Y. X. et al. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 12, 1848–1856 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Catannia, K. C. Leaping eels electrify threats, supporting Humboldt’s account of a battle with horses. Proc. Natl Acad. Sci. USA 113, 6979–6984 (2016).

    Article  CAS  Google Scholar 

  17. 17.

    Wu, C. S. et al. Electrohydrodynamic jet printing driven by a triboelectric nanogenerator. Adv. Funct. Mater. 29, 1901102 (2019).

    Article  CAS  Google Scholar 

  18. 18.

    Li, A. Y., Zi, Y. L., Guo, H. Y., Wang, Z. L. & Fernández, F. M. Triboelectric nanogenerators for sensitive nano-coulomb molecular mass spectrometry. Nat. Nanotechnol. 12, 481–487 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Latorre, R. & Hall, J. E. Dipole potential measurements in asymmetric membranes. Nature 264, 361–363 (1976).

    CAS  Article  Google Scholar 

  20. 20.

    Gurtovenko, A. A. & Vattulainen, I. Lipid transmembrane asymmetry and intrinsic membrane potential: two sides of the same coin. J. Am. Chem. Soc. 129, 5358–5359 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Ma, Y. Q., Poole, K., Goyette, J. & Gaus, Katharina Introducing membrane charge and membrane potential to T cell signaling. Front. Immunol. 8, 1513 (2017).

    Article  CAS  Google Scholar 

  22. 22.

    Wang, H. Y. et al. Transparent, self-healing, arbitrary tailorable moist-electric film generator. Nano Energy 67, 104238 (2020).

    CAS  Article  Google Scholar 

  23. 23.

    Cayre, O. J., Chang, S. T. & Velev, O. D. Polyelectrolyte diode: nonlinear current response of a junction between aqueous ionic gels. J. Am. Chem. Soc. 129, 10801–10806 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Hou, Y. et al. Flexible ionic diodes for low-frequency mechanical energy harvesting. Adv. Energy Mater. 7, 1601983 (2017).

    Article  CAS  Google Scholar 

  25. 25.

    Guo, B. W. et al. Energy harvesting with single-ion-selective nanopores: a concerntration-gradient-driven nanofluidic power source. Adv. Funct. Mater. 20, 1339–1344 (2010).

    CAS  Article  Google Scholar 

  26. 26.

    Dotelli, G., Pelosato, R., Zampori, L. & Sora, I. N. LA-ICP-MS and EDS characterization of electrode/electrolyte interfaces in IT-SOFC materials. Appl. Phys. A 111, 887–896 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Kim, H. J., Chen, B. H., Suo, Z. G. & Hayward, R. C. Ionoelastomer junctions between polymer networks of fixed anions and cations. Science 367, 773–776 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, M. C. et al. Controllable ion transport by surface-charged graphene oxide membrane. Nat. Commun. 10, 1253 (2019).

    Article  CAS  Google Scholar 

  29. 29.

    Guo, W., Tian, Y. & Jiang, L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc. Chem. Res. 46, 2834–2846 (2013).

    Google Scholar 

  30. 30.

    Liu, Q. et al. Asymmetric properties of ion transport in a charged conical nanopore. Phys. Rev. E 75, 051201 (2007).

    Article  CAS  Google Scholar 

  31. 31.

    Zhang, Z. et al. Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. Nat. Commun. 10, 2920 (2019).

    Article  CAS  Google Scholar 

  32. 32.

    Liang, Y. et al. Self-powered wearable graphene fiber for information expression. Nano Energy 32, 329–335 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Ding, T. P. et al. All‐printed porous carbon film for electricity generation from evaporation‐driven water flow. Adv. Funct. Mater. 27, 1700551 (2017).

    Article  CAS  Google Scholar 

  34. 34.

    Shen, D. Z. et al. Self-powered wearable electronics based on moisture enabled electricity generation. Adv. Mater. 30, 1705925 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    Xu, T. et al. Electric power generation through the direct interaction of pristine graphene-oxide with water molecules. Small 14, 1704473 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Yang, C., Huang, Y. X., Cheng, H. H., Jiang, L. & Qu, L. T. Rollable, stretchable, and reconfigurable graphene hygroelectric generators. Adv. Mater. 31, 1805705 (2019).

    Article  CAS  Google Scholar 

  37. 37.

    Liang, Y. et al. Electric power generation via asymmetric moisturizing of graphene oxide for flexible, printable and portable electronics. Energy Environ. Sci. 11, 1730–1735 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Lee, S., Jang, H., Lee, H., Yoon, D. & Jeon, S. Direct fabrication of a moisture-driven power generator by laser-induced graphitization with a gradual defocusing method. ACS Appl. Mater. Interfaces 11, 26970–26975 (2019).

    CAS  Article  Google Scholar 

  39. 39.

    Schroeder, T. B. H. et al. An electric-eel-inspired soft power source from stacked hydrogels. Nature 552, 214–218 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    Shao, C. X. et al. Large-scale production of flexible, high-voltage hydroelectric films based on solid oxides. ACS Appl. Mater. Interfaces 11, 30927–30935 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Gao, X. et al. Electric power generation by paper materials. J. Mater. Chem. A 7, 20574–20578 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Chen, N. et al. MEG actualized by high-valent metal carrier transport. Nano Energy 65, 104047 (2019).

    CAS  Article  Google Scholar 

  43. 43.

    Shao, C. X. et al. Wearable fiberform hygroelectric generator. Nano Energy 53, 698–705 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Li, J. et al. Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy 58, 797–802 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    Bae, J., Yun, T. G., Suh, B. L., Kim, J. & Kim, I.-D. Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy Environ. Sci. 13, 527–534 (2020).

    CAS  Article  Google Scholar 

  46. 46.

    Yun, T. G., Bae, J., Rothschild, A. & Kim, I.-D. Transpiration driven electrokinetic power generator. ACS Nano 13, 12703–12709 (2019).

    CAS  Article  Google Scholar 

  47. 47.

    Das, S. S., Pedireddi, V. M., Bandopadhyay, A., Partha, S. & Chakraborthy, S. Electrical power generation from wet textile mediated by spontaneous nanoscale evaporation. Nano Lett. 19, 7191–7200 (2019).

    CAS  Article  Google Scholar 

  48. 48.

    Sun, J. C. et al. Electricity generation from a Ni-Al layered double hydroxide-based flexible generator driven by natural water evaporation. Nano Energy 57, 269–278 (2019).

    CAS  Article  Google Scholar 

  49. 49.

    Tian, J. L. et al. Surface charge density-dependent performance of Ni–Al layered double hydroxide-based flexible self-powered generators driven by natural water evaporation. Nano Energy 70, 104502 (2020).

    CAS  Article  Google Scholar 

  50. 50.

    Ji, J. Z. et al. Osmotic power generation with positively and negatively charged 2D nanofluidic membrane pairs. Adv. Funct. Mater. 27, 1603623 (2017).

    Article  CAS  Google Scholar 

  51. 51.

    Yang, P. F. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (no. 2017YFB1104300), the National Science Foundation of China (nos. 22035005, 52022051, 22075165, 52073159 and 52090030), Tsinghua University Initiative Scientific Research Program (no. 2019Z08QCX08), NSFC-STINT (no. 21911530143), the State Key Laboratory of Tribology (no. SKLT2021B03) and Tsinghua-Foshan Innovation Special Fund (no. 2018THFS0412). This work is also supported by grant no. 2019GQG1025 from the Institute for Guo Qiang, Tsinghua University.

Author information

Affiliations

Authors

Contributions

L.Q., H.C. and H.W. designed the experiments. H.W., H.C. and T.H. performed the experiments. Y.H. conducted computational studies. H.W., Y.S., D.X., P.Y. and Y.Z. designed and characterized the self-powered FET. H.C. and C.L. gave advice on experiments. L.Q. and H.C. supervised the entire project. All authors discussed the results and reviewed the manuscript.

Corresponding authors

Correspondence to Huhu Cheng or Liangti Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Guihua Yu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Discussion and Tables 1–6.

Supplementary Video 1

Integration of HMEG units by the sequentially aligned stacking method.

Supplementary Video 2

Dynamic electronic ink screen powered by integrated HMEGs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Sun, Y., He, T. et al. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1,000 V output. Nat. Nanotechnol. (2021). https://doi.org/10.1038/s41565-021-00903-6

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research