Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer

Abstract

Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy. In contrast, a targeted screen revealed that IGF1R kinase inhibitors enhance uptake and efficacy of nab-PTX by mimicking glucose deprivation and promoting macropinocytosis via AMPK, a nutrient sensor in cells. This study thus shows how nanoparticulate albumin bound drug efficacy can be therapeutically improved by reprogramming nutrient signalling and enhancing macropinocytosis in cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nab-PTX accumulates in cancer cells distinctly from other nanoformulations.
Fig. 2: RAS signalling drives nab-PTX uptake by cancer cells.
Fig. 3: Cancer-cell RAS signalling drives in vivo tumour accumulation of nab-PTX.
Fig. 4: MEK1/2 inhibition via trametinib reduces nab-PTX uptake and efficacy.
Fig. 5: IGF1R inhibitor enhances uptake of nab-PTX in an AMPK- and macropinocytosis-dependent manner.
Fig. 6: IGF1R-targeted kinase inhibitor enhances nab-PTX uptake and efficacy in vivo.

Similar content being viewed by others

Data availability

All data are available from corresponding authors upon request. RNA-seq data used to calculate the MAPK/AMPK activity score for each cell line were obtained from the Cancer Cell Line Encyclopedia (https://portals.broadinstitute.org/ccle).

Code availability

This study did not generate new custom code or mathematical algorithms.

References

  1. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017).

    Article  CAS  Google Scholar 

  2. Commisso, C. et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013).

    Article  CAS  Google Scholar 

  3. Lee, S. W. et al. EGFR-Pak signaling selectively regulates glutamine deprivation-induced macropinocytosis. Dev. Cell 50, 381–392.e5 (2019).

    Article  CAS  Google Scholar 

  4. Yao, W. et al. Syndecan 1 is a critical mediator of macropinocytosis in pancreatic cancer. Nature 568, 410–414 (2019).

    Article  CAS  Google Scholar 

  5. Yardley, D. A. nab-Paclitaxel mechanisms of action and delivery. J. Control. Release 170, 365–372 (2013).

    Article  CAS  Google Scholar 

  6. Hoogenboezem, E. N. & Duvall, C. L. Harnessing albumin as a carrier for cancer therapies. Adv. Drug Deliv. Rev. 130, 73–89 (2018).

    Article  CAS  Google Scholar 

  7. Barkat, M. A., Beg, S., Pottoo, F. H. & Ahmad, F. J. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomed. 14, 1323–1341 (2019).

    Article  CAS  Google Scholar 

  8. Havel, H. A. Where are the nanodrugs? An industry perspective on development of drug products containing nanomaterials. AAPS J. 18, 1351–1353 (2016).

    Article  CAS  Google Scholar 

  9. Socinski, M. A. et al. Weekly nab-paclitaxel in combination with carboplatin versus solvent-based paclitaxel plus carboplatin as first-line therapy in patients with advanced non-small-cell lung cancer: final results of a phase III trial. J. Clin. Oncol. 30, 2055–2062 (2012).

    Article  CAS  Google Scholar 

  10. Von Hoff, D. D. et al. Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. J. Clin. Oncol. 29, 4548–4554 (2011).

    Article  CAS  Google Scholar 

  11. Waters, A. M. & Der, C. J. KRAS: the critical driver and therapeutic target for pancreatic cancer. Cold Spring Harb Perspect. Med. 8, a031435 (2018).

  12. Tempero, M. A. et al. APACT: phase III, multicenter, international, open-label, randomized trial of adjuvant nab-paclitaxel plus gemcitabine (nab-P/G) vs gemcitabine (G) for surgically resected pancreatic adenocarcinoma. J. Clin. Oncol. 37:15, 4000 (2019).

    Article  Google Scholar 

  13. Desai, N., Trieu, V., Damascelli, B. & Soon-Shiong, P. SPARC expression correlates with tumor response to albumin-bound paclitaxel in head and neck cancer patients. Transl. Oncol. 2, 59–64 (2009).

    Article  Google Scholar 

  14. Hidalgo, M. et al. SPARC expression did not predict efficacy of nab-paclitaxel plus gemcitabine or gemcitabine alone for metastatic pancreatic cancer in an exploratory analysis of the phase III MPACT trial. Clin. Cancer Res. 21, 4811–4818 (2015).

    Article  CAS  Google Scholar 

  15. Neesse, A. et al. SPARC independent drug delivery and antitumour effects of nab-paclitaxel in genetically engineered mice. Gut 63, 974–983 (2014).

    Article  CAS  Google Scholar 

  16. Cullis, J. et al. Macropinocytosis of nab-paclitaxel drives macrophage activation in pancreatic cancer. Cancer Immunol. Res. 5, 182–190 (2017).

    Article  CAS  Google Scholar 

  17. Lukinavičius, G. et al. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11, 731–733 (2014).

    Article  CAS  Google Scholar 

  18. DuPage, M., Dooley, A. L. & Jacks, T. Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat. Protoc. 4, 1064–1072 (2009).

    Article  CAS  Google Scholar 

  19. Cuccarese, M. F. et al. Heterogeneity of macrophage infiltration and therapeutic response in lung carcinoma revealed by 3D organ imaging. Nat. Commun. 8, 14293 (2017).

    Article  CAS  Google Scholar 

  20. Sparreboom, A. et al. Cremophor EL-mediated alteration of paclitaxel distribution in human blood. Cancer Res. 59, 1454–1457 (1999).

    CAS  Google Scholar 

  21. Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).

    Article  CAS  Google Scholar 

  22. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Article  CAS  Google Scholar 

  23. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).

    Article  CAS  Google Scholar 

  24. Kim, H. Y. et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64Cu-labeled macrin. ACS Nano 12, 12015–12029 (2018).

    Article  CAS  Google Scholar 

  25. Redelman-Sidi, G. et al. The canonical Wnt pathway drives macropinocytosis in cancer. Cancer Res. 78, 4658–4670 (2018).

    Article  CAS  Google Scholar 

  26. Langer, C. J. et al. Randomized, phase III trial of first-line figitumumab in combination with paclitaxel and carboplatin versus paclitaxel and carboplatin alone in patients with advanced non-small-cell lung cancer. J. Clin. Oncol. 32, 2059–2066 (2014).

    Article  CAS  Google Scholar 

  27. Ajona, D. et al. Short-term starvation reduces IGF-1 levels to sensitize lung tumors to PD-1 immune checkpoint blockade. Nat. Cancer 1, 75–85 (2020).

    Article  Google Scholar 

  28. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012).

    Article  CAS  Google Scholar 

  29. Kim, S. M. et al. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Disco. 8, 866–883 (2018).

    Article  CAS  Google Scholar 

  30. Ning, J., Xi, G. & Clemmons, D. R. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152, 3143–3154 (2011).

    Article  CAS  Google Scholar 

  31. Tosca, L., Chabrolle, C., Crochet, S., Tesseraud, S. & Dupont, J. IGF-1 receptor signaling pathways and effects of AMPK activation on IGF-1-induced progesterone secretion in hen granulosa cells. Domest. Anim. Endocrinol. 34, 204–216 (2008).

    Article  CAS  Google Scholar 

  32. Wagle, M. C. et al. A transcriptional MAPK Pathway Activity Score (MPAS) is a clinically relevant biomarker in multiple cancer types. NPJ Precis Oncol. 2, 7 (2018).

    Article  CAS  Google Scholar 

  33. Wan, L. et al. Phosphorylation of EZH2 by AMPK suppresses PRC2 methyltransferase activity and oncogenic function. Mol. Cell 69, 279–291.e5 (2018).

    Article  CAS  Google Scholar 

  34. Cui, M. et al. Multifunctional albumin nanoparticles as combination drug carriers for intra-tumoral chemotherapy. Adv. Health. Mater. 2, 1236–1245 (2013).

    Article  CAS  Google Scholar 

  35. Zaro, J. L. Lipid-based drug carriers for prodrugs to enhance drug delivery. AAPS J. 17, 83–92 (2015).

    Article  CAS  Google Scholar 

  36. Bush, M. A. et al. Safety, tolerability, pharmacodynamics and pharmacokinetics of albiglutide, a long-acting glucagon-like peptide-1 mimetic, in healthy subjects. Diabetes Obes. Metab. 11, 498–505 (2009).

    Article  CAS  Google Scholar 

  37. Suo, Z. et al. Investigation on the interaction of dabrafenib with human serum albumin using combined experiment and molecular dynamics simulation: exploring the binding mechanism, esterase-like activity, and antioxidant activity. Mol. Pharm. 15, 5637–5645 (2018).

    Article  CAS  Google Scholar 

  38. Scaltriti, M. & Baselga, J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin. Cancer Res. 12, 5268–5272 (2006).

    Article  CAS  Google Scholar 

  39. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012).

    Article  CAS  Google Scholar 

  40. Dinulescu, D. M. et al. Role of K-ras and Pten in the development of mouse models of endometriosis and endometrioid ovarian cancer. Nat. Med. 11, 63–70 (2005).

    Article  CAS  Google Scholar 

  41. McAuliffe, S. M. et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc. Natl Acad. Sci. USA 109, E2939–E2948 (2012).

    Article  CAS  Google Scholar 

  42. McFadden, D. G. et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc. Natl Acad. Sci. USA 111, E1600–E1609 (2014).

    Article  CAS  Google Scholar 

  43. Vanden Borre, P. et al. Combined BRAF(V600E)- and SRC-inhibition induces apoptosis, evokes an immune response and reduces tumor growth in an immunocompetent orthotopic mouse model of anaplastic thyroid cancer. Oncotarget 5, 3996–4010 (2014).

    Article  Google Scholar 

  44. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  Google Scholar 

  45. Vanden Borre, P. et al. The next generation of orthotopic thyroid cancer models: immunocompetent orthotopic mouse models of BRAF V600E-positive papillary and anaplastic thyroid carcinoma. Thyroid 24, 705–714 (2014).

    Article  CAS  Google Scholar 

  46. Girnita, A. et al. Cyclolignans as inhibitors of the insulin-like growth factor-1 receptor and malignant cell growth. Cancer Res. 64, 236–242 (2004).

    Article  CAS  Google Scholar 

  47. Mulvihill, M. J. et al. Discovery of OSI-906: a selective and orally efficacious dual inhibitor of the IGF-1 receptor and insulin receptor. Future Med. Chem. 1, 1153–1171 (2009).

    Article  CAS  Google Scholar 

  48. Miller, M. A. et al. Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nat. Commun. 6, 8692 (2015).

    Article  CAS  Google Scholar 

  49. Pineda, J. J. et al. Site occupancy calibration of taxane pharmacology in live cells and tissues. Proc. Natl Acad. Sci. USA 115, E11406–E11414 (2018).

    Article  CAS  Google Scholar 

  50. Devaraj, N. K., Keliher, E. J., Thurber, G. M., Nahrendorf, M. & Weissleder, R. 18F labeled nanoparticles for in vivo PET-CT imaging. Bioconjug Chem. 20, 397–401 (2009).

    Article  CAS  Google Scholar 

  51. Josephson, L., Tung, C. H., Moore, A. & Weissleder, R. High-efficiency intracellular magnetic labeling with novel superparamagnetic-Tat peptide conjugates. Bioconjug Chem. 10, 186–191 (1999).

    Article  CAS  Google Scholar 

  52. Langer, K. et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm. 257, 169–180 (2003).

    Article  CAS  Google Scholar 

  53. Langer, K. et al. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm. 347, 109–117 (2008).

    Article  CAS  Google Scholar 

  54. Tsubaki, M. et al. Trametinib suppresses chemotherapy-induced cold and mechanical allodynia via inhibition of extracellular-regulated protein kinase 1/2 activation. Am. J. Cancer Res. 8, 1239–1248 (2018).

    CAS  Google Scholar 

  55. Menu, E. et al. Inhibiting the IGF-1 receptor tyrosine kinase with the cyclolignan PPP: an in vitro and in vivo study in the 5T33MM mouse model. Blood 107, 655–660 (2006).

    Article  CAS  Google Scholar 

  56. Xu, W., Tamura, T. & Takatsu, K. CpG ODN mediated prevention from ovalbumin-induced anaphylaxis in mouse through B cell pathway. Int. Immunopharmacol. 8, 351–361 (2008).

    Article  CAS  Google Scholar 

  57. Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012).

    Article  CAS  Google Scholar 

  58. Ng, T. S. C. et al. Detecting immune response to therapies targeting PDL1 and BRAF using ferumoxytol MRI and Macrin in anaplastic thyroid cancer. Radiology 298, 123–132 (2020).

    Article  Google Scholar 

  59. Miller, M. A. et al. Predicting therapeutic nanomedicine efficacy using a companion magnetic resonance imaging nanoparticle. Sci. Transl. Med. 7, 314ra183 (2015).

    Article  Google Scholar 

  60. Miller, M. A. et al. Radiation therapy primes tumors for nanotherapeutic delivery via macrophage-mediated vascular bursts. Sci. Transl. Med. 9, eaal0225 (2017).

Download references

Acknowledgements

We acknowledge S. Schmidt and G. Wojtkiewicz for assistance with imaging and biodistribution through the MGH-CSB MIP program. Part of this work was supported by NIH/NCI grant nos. R00CA207744 (M.A.M), DP2CA259675 (M.A.M), U01CA206997 (R.W.), R01HL131495 (R.W.), R01CA206890 (R.W.), T32CA079443 (R.L.), R01GM069668 (D.A.L.), R01CA96504 (D.A.L.), U54CA112967 (D.A.L.), U54CA217377 (D.A.L.), the NSF Graduate Research Fellowship Program (S.J.W.), the American Cancer Society-Ellison Foundation Postdoctoral Fellowship PF-20-106-01-LIB (R.L.), MGH FMD Fellowship (R.L.) and an American Thyroid Association/Thyroid Cancer Survivors’ Association Research Grant (T.S.C.N.).

Author information

Authors and Affiliations

Authors

Contributions

R.L., R.W. and M.A.M. developed the concept. R.L., T.S.C.N., S.J.W., C.B.R., H.M., N.B., R.W. and M.A.M designed the experiments. R.L., T.S.C.N., S.J.W, M.P., C.B.R, H.M., R.H.K. and M.A.G. performed the experiments. R.L., R.W. and M.A.M. wrote the paper. R.L., T.S.C.N., S.J.W., M.P., C.B.R., H.M., R.H.K., M.A.G., D.A.L., S.P., D.M.D., N.B., R.W. and M.A.M. analysed the results and edited the paper.

Corresponding authors

Correspondence to Ralph Weissleder or Miles A. Miller.

Ethics declarations

Competing interests

R.W. is a cofounder of T2Biosystems and Lumicell, serves as a scientific adviser for ModeRNA Therapeutics, Tarveda Therapeutics and Alivio Therapeutics. None of these activities are related to the paper. The other authors declare that they have no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Twan Lammers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Figs. 1–23 and reference.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, R., Ng, T.S.C., Wang, S.J. et al. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. Nat. Nanotechnol. 16, 830–839 (2021). https://doi.org/10.1038/s41565-021-00897-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00897-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research