Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Nanophotonics for light detection and ranging technology

Abstract

Light detection and ranging (LiDAR) technology, a laser-based imaging technique for accurate distance measurement, is considered one of the most crucial sensor technologies for autonomous vehicles, artificially intelligent robots and unmanned aerial vehicle reconnaissance. Until recently, LiDAR has relied on light sources and detectors mounted on multiple mechanically rotating optical transmitters and receivers to cover an entire scene. Such an architecture gives rise to limitations in terms of the imaging frame rate and resolution. In this Review, we examine how novel nanophotonic platforms could overcome the hardware restrictions of existing LiDAR technologies. After briefly introducing the basic principles of LiDAR, we present the device specifications required by the industrial sector. We then review a variety of LiDAR-relevant nanophotonic approaches such as integrated photonic circuits, optical phased antenna arrays and flat optical devices based on metasurfaces. The latter have already demonstrated exceptional functional beam manipulation properties, such as active beam deflection, point-cloud generation and device integration using scalable manufacturing methods, and are expected to disrupt modern optical technologies. In the outlook, we address the upcoming physics and engineering challenges that must be overcome from the viewpoint of incorporating nanophotonic technologies into commercially viable, fast, ultrathin and lightweight LiDAR systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A conceptual schematic of a nanophotonic LiDAR system.
Fig. 2: A schematic of conventional macroscanner and MEMS-type LiDAR systems.
Fig. 3: Active beam steering metasurfaces.
Fig. 4: Point-cloud-generating metasurfaces and device integration.
Fig. 5: Photonics integrated LiDAR approaches.
Fig. 6: All-solid-state active metaphotonic spatial light modulator (SLM).

Similar content being viewed by others

References

  1. Smullin, L. D. & Fiocco, G. Optical echoes from the moon. Nature 194, 1267 (1962).

    Article  Google Scholar 

  2. Christian, J. A. & Cryan, A. A survey of LiDAR technology and its use in spacecraft relative navigation. In Proc. AIAA Guidance, Navigation and Control Conference. 1–7 (American Institute of Aeronautics And Astronautics, 2013).

  3. Royo, S. & Ballesta-Garcia, M. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci. 9, 4093 (2019).

    Article  Google Scholar 

  4. Kaul, L., Zlot, R. & Bosse, M. Continuous-time three-dimensional mapping for micro aerical vehicles with a passively actuated rotating laser scanner. J. Field Robot. 33, 103–132 (2016).

    Article  Google Scholar 

  5. Ham, Y., Han, K. K., Lin, J. J. & Goparvar-Fard, M. Visual monitoring of civil infrastructure systems via camera-equipped unmanned aerial vehicles (UAVs): a review of related works. Visual. Eng. 4, 1 (2016).

    Article  Google Scholar 

  6. LiDAR drives forwards. Nat. Photon. 12, 441 (2018).

  7. Jiang, Y., Karpf, S. & Jalali, B. Time-stretch lidar as a spectrally scanned time-of-flight ranging camera. Nat. Photon. 14, 14–18 (2020).

    Article  CAS  Google Scholar 

  8. Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photon. 11, 3451–351 (2017).

    Article  Google Scholar 

  9. Na, Y. et al. Ultrafast, sub-nanometre-precision and multifunctional time-of-flight detection. Nat. Photon. 14, 355–360 (2020).

    Article  CAS  Google Scholar 

  10. Trocha, P. et al. Ultrafast optical ranging using microresonator soliton frequency combs. Science 359, 887–891 (2018).

    Article  CAS  Google Scholar 

  11. Suh, M.-G. & Vahala, K. J. Soliton microcomb range measurement. Science 359, 884–887 (2018).

    Article  CAS  Google Scholar 

  12. Riemensberger, J. et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature 581, 164–170 (2020).

    Article  CAS  Google Scholar 

  13. Shuttleworth, J. AE Standards News: J3016 automated-driving graphic update. SAE Inernational https://www.sae.org/news/2019/01/sae-updates-j3016-automated-driving-graphic (2019).

  14. Hecht, J. Lasers for LiDAR: FMCW lidar: an alternative for self-driving cars. LaserFocusWorld https://www.laserfocusworld.com/home/article/16556322/lasers-for-lidar-fmcw-lidar-an-alternative-for-selfdriving-cars (2019).

  15. LiDAR for Automotive and Industrial Applications 2019: Market & Technology Report (Yole Développement, 2019).

  16. Shpunt, A. & Erlich, R. Scanning depth engine. US patent 10,261,578 (2019).

  17. Kinsey, N., DeVault, C., Boltasseva, A. & Shalaev, V. M. Near-zero-index materials for photonics. Nat. Rev. Mater. 4, 742–760 (2019).

    Article  CAS  Google Scholar 

  18. Huang, Y.-W. et al. Gate-tunable conducting oxide metasurfaces. Nano Lett. 16, 5319–5325 (2016).

    Article  CAS  Google Scholar 

  19. Kafaie Shirmanesh, G., Sokhoyan, R., Pala, R. A. & Atwater, H. A. Dual-gated active metasurfaces at 1550 nm with wide (>300°) phase tenability. Nano Lett. 18, 2957–2963 (2018).

    Article  CAS  Google Scholar 

  20. Park, J., Kang, J.-H., Kim, S. J., Liu, X. & Brongersma, M. L. Dynamic reflection phase and polarization control in metasurfaces. Nano Lett. 17, 407–413 (2017).

    Article  CAS  Google Scholar 

  21. Lesina, A. C., Goodwill, D., Bernier, E., Ramunno, L. & Berini, P. Tunable plasmonic metasurfaces for optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 27, 4700116 (2020).

    Google Scholar 

  22. Liberal, I., Li, Y. & Engheta, N. Reconfigurable epsilon-near-zero metasurfaces via photonic doping. Nanophotonics 7, 1117–1127 (2018).

    Article  CAS  Google Scholar 

  23. Brière, G. et al. An etching-free approach toward large-scale light-emitting metasurfaces. Adv. Opt. Mater. 7, 1801271 (2019).

    Article  Google Scholar 

  24. Chen, B. H. et al. GaN metalens for pixel-level full-color routing at visible light. Nano Lett. 17, 6345–6352 (2017).

    Article  CAS  Google Scholar 

  25. Lee, J. et al. Ultrafast electrically tunable polaritonic metausrfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).

    Article  CAS  Google Scholar 

  26. Wu, P. C. et al. Dynamic beam steering with all-dielectric electro-optic III–V multiple quantum-well metasurfaces. Nat. Commun. 10, 3654 (2019).

    Article  Google Scholar 

  27. Arbabi, E. et al. MEMS-tunable dielectric metasurface lens. Nat. Commun. 9, 812 (2018).

    Article  Google Scholar 

  28. Holsteen, A. L., Cihan, A. F. & Brongersma, M. L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces. Science 365, 257–260 (2019).

    Article  CAS  Google Scholar 

  29. Pryce, I. M., Aydin, K., Kelaita, Y. A., Briggs, R. M. & Atwater, H. A. Highly strained compliant optical metamaterials with large frequency tenability. Nano Lett. 10, 4222–4227 (2010).

    Article  CAS  Google Scholar 

  30. Cui, Y., Zhou, J., Tamma, V. A. & Park, W. Dynamic tuning and symmetry lowering of Fano resonance in plasmonic nanostructure. ACS Nano 6, 2385–2393 (2012).

    Article  CAS  Google Scholar 

  31. Gutruf, P. et al. Mechanically tunable dielectric resonator metasurfaces at visible frequencies. ACS Nano 10, 133–141 (2016).

    Article  CAS  Google Scholar 

  32. Reeves, J. B. et al. Tunable infrared metasurface on a soft polymer scaffold. Nano Lett. 18, 2802–2806 (2018).

    Article  CAS  Google Scholar 

  33. Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

    Article  CAS  Google Scholar 

  34. Ee, H.-S. & Agarwal, R. Tunable metasurface and flat optical zoom lens on a stretchable substrate. Nano Lett. 16, 2818–2823 (2016).

    Article  CAS  Google Scholar 

  35. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Adaptive metalenses with simultaneous electrical control of focal length, astigmatism, and shift. Sci. Adv. 4, eaap9957 (2018).

    Article  Google Scholar 

  36. Wang, J., Zhang, G. & You, Z. Design rules for dense and rapid Lissajous scanning. Microsyst. Nanoeng. 6, 101 (2020).

    Article  Google Scholar 

  37. Oshita, M., Takahashi, H., Ajiki, Y. & Kan, T. Reconfigurable surface plasmon resonance photodetector with a MEMS deformable cantilever. ACS Photon. 7, 673–679 (2020).

    Article  CAS  Google Scholar 

  38. Li, S.-Q. et al. Phase-only transmissive SLM based on tunable dielectric metasurfaces. Science 364, 1087–1090 (2019).

    Article  CAS  Google Scholar 

  39. Wuttig, M., Bhaskaran, H. & Taubner, T. Phase-change materials for non-volatile photonic applications. Nat. Photon. 11, 465–276 (2017).

    Article  CAS  Google Scholar 

  40. Gholipour, B., Zhang, J., MacDonald, K. F., Hewak, D. W. & Zheludev, N. I. An all-optical, non-volatile, bidirectional, phase-change meta-switch. Adv. Mater. 25, 3050–3054 (2013).

    Article  CAS  Google Scholar 

  41. Rensberg, J. et al. Active optical metasurfaces based on defect-engineered phase-transition materials. Nano Lett. 16, 1050–1055 (2016).

    Article  CAS  Google Scholar 

  42. De Galarreta, C. R. et al. Reconfigurable multilevel control of hybrid all-dielectric phase-change metasurfaces. Optica 7, 476–484 (2020).

    Article  Google Scholar 

  43. Yin, X. et al. Beam switching and bifocal zoom lensing using active plasmonic metasurfaces. Light Sci. Appl. 6, e17016 (2017).

    Article  CAS  Google Scholar 

  44. Lei, D. Y., Appavoo, K., Sonnefraud, Y., Haglund, R. F. & Maier, S. A. Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide. Opt. Express 35, 3988–3990 (2010).

    CAS  Google Scholar 

  45. Kaplan, G., Aydin, K. & Scheuer, J. Dynamically controlled plasmonic nano-antenna phase array utilizing vanadium dioxide. Opt. Mater. Exp. 5, 2513–2524 (2015).

    Article  CAS  Google Scholar 

  46. Butakov, N. A. et al. Switchable plasmonic-dielectric resonators with metal-insulator transitions. ACS Photon. 5, 371–377 (2018).

    Article  CAS  Google Scholar 

  47. Zhu, Z., Evans, P. G., Haglund, R. F. & Valentine, J. G. Dynamically reconfigurable metadevice employing nanostructured phase-change materials. Nano Lett. 17, 4881–4885 (2017).

    Article  CAS  Google Scholar 

  48. Kim, S.-J. et al. Reconfigurable all-dielectric Fano metasurfaces for strong full-space intensity modulation of visible light. Nanoscale Horiz. 5, 1088–1095 (2020).

    Article  CAS  Google Scholar 

  49. Savaliya, P. B., Gupta, N. & Dhawan, A. Steerable plasmonic nanoantennas: active beam steering of radiation patterns using phase change materials. Opt. Express 27, 31567–31586 (2019).

    Article  CAS  Google Scholar 

  50. Gnecchi, S. & Jackson, C. A 1 × 16 SiPM array for automotive 3D imaging LiDAR systems. In International Image Sensor Workshop (IISW) 133–136 (International Image Sensor Society, 2017).

  51. Ni, Y. et al. Metasurface for structured light projection over 120° field of view. Nano Lett. 20, 6719–6724 (2020).

    Article  CAS  Google Scholar 

  52. Li, Z. et al. Full-space cloud of random points with a scrambling metasurface. Light. Sci. Appl. 7, 63 (2018).

    Article  Google Scholar 

  53. Chen, K. et al. 2π-space uniform-backscattering metasurfaces enabled with geometric phase and magnetic resonance in visible light. Opt. Express 28, 12331–12341 (2020).

    Article  CAS  Google Scholar 

  54. Li, N. et al. Large-area pixelated metasurface beam deflector on a 12-inch glass wafer for random point generation. Nanophotonics 8, 1855–1861 (2019).

    Article  CAS  Google Scholar 

  55. Jin, C. et al. Dielectric metasurfaces for distance measurements and three-dimensional imaging. Adv. Photon. 1, 036001 (2019).

    Article  CAS  Google Scholar 

  56. Guo, Q. et al. Compact single-shot metalens depth sensors inspired by eyes of jumping spiders. Proc. Natl Acad. Sci. USA 116, 22959–22965 (2019).

    Article  CAS  Google Scholar 

  57. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 17, 896–901 (2017).

    Article  Google Scholar 

  58. Mahmood, N. et al. Twisted non-diffracting beams through all dielectric meta-axicon. Nanoscale 11, 20571–20578 (2019).

    Article  CAS  Google Scholar 

  59. Lavery, M. P. J., Speirits, F. C., Barnett, S. M. & Padgett, M. J. Detection of a spinning object using light’s orbital angular momentum. Science 341, 537–540 (2013).

    Article  CAS  Google Scholar 

  60. Cvijetic, N., Milione, G., Ip, E. & Wang, T. Detecting lateral motion using light’s orbital angular momentum. Sci. Rep. 5, 15422 (2015).

    Article  CAS  Google Scholar 

  61. Dorrah, A. H., Zamboni-Rached, M. & Mojahedi, M. Experimental demonstration of tunable refractometer based on orbital angular momentum of longitudinally structured light. Light Sci. Appl. 7, 40 (2018).

    Article  Google Scholar 

  62. Geng, J. Structured-light 3D surface imaging: a tutorial. Adv. Opt. Photon. 3, 128–160 (2011).

    Article  CAS  Google Scholar 

  63. Khaidarov, E. et al. Control of LED Emission with functional dielectric metasurfaces. Laser Photon. Rev. 14, 1900235 (2020).

    Article  CAS  Google Scholar 

  64. Iyer, P. P. et al. Unidirectional luminescence from InGaN/GaN quantum-well metasurfaces. Nat. Photon. 14, 543–548 (2020).

    Article  CAS  Google Scholar 

  65. Xie, Y.-Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    Article  CAS  Google Scholar 

  66. Wang, Q.-H. et al. On-chip generation of structured light via metasurface integrated vertical cavity surface emitting lasers. Laser Photon. Rev. 15, 2000385 (2021).

    Article  CAS  Google Scholar 

  67. Martin, A. et al. Photonic integrated circuit-based FMCW coherent LiDAR. J. Lightwave Technol. 36, 4640–4645 (2018).

    Article  CAS  Google Scholar 

  68. Minoshima, K. & Matsumoto, H. High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser. Appl. Opt. 39, 5512–5517 (2000).

    Article  CAS  Google Scholar 

  69. Schuhler, N., Salvadé, Y., Lévêque, S., Dändliker, R. & Holzwarth, R. Frequency-comb-referenced two-wavelength source for absolute distance measurement. Opt. Lett. 31, 3101–3103 (2006).

    Article  Google Scholar 

  70. Coddington, I., Swann, W. C., Nenadovic, L. & Newbury, N. R. Rapid and precise absolute distance measurements at long range. Nat. Photon. 3, 351–356 (2009).

    Article  CAS  Google Scholar 

  71. Yang, K. Y. et al. Inverse-designed non-reciprocal pulse router for chip-based LiDAR. Nat. Photon. 14, 369–374 (2020).

    Article  CAS  Google Scholar 

  72. Davoyan, A. & Atwater, H. Perimeter-control architecture for optical phased arrays and metasurfaces. Phys. Rev. Appl. 14, 024038 (2020).

    Article  CAS  Google Scholar 

  73. Dostart, N. et al. Serpentine optical phased arrays for scalable integrated photonic lidar beam steering. Optica 7, 726–733 (2020).

    Article  CAS  Google Scholar 

  74. Hutchison, D. N. et al. High-resolution aliasing-free optical beam steering. Optica 3, 887–890 (2016).

    Article  CAS  Google Scholar 

  75. Komljenovic, T., Helkey, R., Coldren, L. & Bowers, J. E. Sparse aperiodic arrays for optical beam forming and LIDAR. Opt. Express 25, 2511–2528 (2017).

    Article  Google Scholar 

  76. Shaltout, A. M. et al. Spatiotemporal light control with frequency-gradient metasurfaces. Science 365, 374–377 (2019).

    Article  CAS  Google Scholar 

  77. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

    Article  CAS  Google Scholar 

  78. Liu, Z. et al. Compounding meta-atoms into metamolecules with hybrid artificial intelligence techniques. Adv. Mater. 32, 1904790 (2020).

    Article  CAS  Google Scholar 

  79. Ma, W., Cheng, F., Xu, Y., Wen, Q. & Liu, Y. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019).

    Article  Google Scholar 

  80. Liu, Z., Zhu, D., Rodrigues, S. P., Lee, K.-T. & Cai, W. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).

    Article  CAS  Google Scholar 

  81. Malkiel, I. et al. Plasmonic nanostructure design and characterizations via deep learning. Light. Sci. Appl. 7, 60 (2018).

    Article  Google Scholar 

  82. So, S., Badloe, T., Noh, J., Bravo-Abad, J. & Rho, J. Deep learning enabled inverse design in nanophotonics. Nanophotonics 9, 1041–1057 (2020).

    Article  Google Scholar 

  83. So, S. & Rho, J. Designing nanophotonic structure using conditional-deep convolutional generative adversarial networks. Nanophotonics 8, 1255–1261 (2019).

    Article  Google Scholar 

  84. Elsawy, M. M. R., Lanteri, S., Duvigneau, R., Fan, J. A. & Genevet, P. Numerical optimization methods for metasurfaces. Laser Photon. Rev. 14, 1900445 (2020).

    Article  CAS  Google Scholar 

  85. She, A., Zhang, S., Shian, S., Clarke, D. R. & Capasso, F. Large area metalenses: design, characterization, and mass manufacturing. Opt. Express 26, 1573–1585 (2018).

    Article  CAS  Google Scholar 

  86. Park, J.-S. et al. All-glass, large metalens at visible wavelength using deep ultraviolet projection lithography. Nano Lett. 19, 8673–8682 (2019).

    Article  CAS  Google Scholar 

  87. Li, N. et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics 9, 3071–3087 (2020).

    Article  Google Scholar 

  88. Kim, K., Yoon, G., Baek, S., Rho, J. & Lee, H. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces 11, 26109–26115 (2019).

    Article  CAS  Google Scholar 

  89. Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

    Article  CAS  Google Scholar 

  90. Odom, T. W., Love, J. C., Wolfe, D. B., Paul, K. E. & Whitesides, G. M. Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314–5320 (2002).

    Article  CAS  Google Scholar 

  91. Henzie, J., Lee, M. H. & Odom, T. W. Multiscale patterning of plasmonic metamaterials. Nat. Nanotechnol. 2, 549–554 (2007).

    Article  CAS  Google Scholar 

  92. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  CAS  Google Scholar 

  93. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  CAS  Google Scholar 

  94. Fadaly, E. M. T. et al. Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020).

    Article  CAS  Google Scholar 

  95. Ferrari, S., Carsten, S. & Wolfram, P. Waveguide-integrated superconducting nanowire single-photon detectors. Nanophotonics 7, 1725–1758 (2018).

    Article  CAS  Google Scholar 

  96. Yang, Y. et al. Ferroelectric enhanced performance of GeSn/Ge dual-nanowire photodetector. Nano Lett. 20, 3872–3879 (2020).

    Article  CAS  Google Scholar 

  97. Kuzmenko, K. et al. 3D LIDAR imaging using Ge-on-Si single-photon avalanche diode detectors. Opt. Express 28, 1330–1344 (2020).

    Article  CAS  Google Scholar 

  98. Katiyar, A. K., Thai, K. Y., Yun, W. S., Lee, J. & Ahn, J.-H. Breaking the absorption limit of Si toward SWIR wavelength range via strain engineering. Sci. Adv. 6, eabb0576 (2020).

    Article  CAS  Google Scholar 

  99. Akselrod, G. M. Optics for automotive lidar: metasurface beam steering enables solid-state, high-performance lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14036818/metasurface-beam-steering-enables-solidstate-highperformance-lidar (2019).

  100. Wallace, J. Lumotive and Himax collaborate on metasurface approach to beam steering for lidar. LaserFocusWorld https://www.laserfocusworld.com/optics/article/14039216/lumotive-and-himax-collaborate-on-metasurface-approach-to-beam-steering-for-lidar (2019).

  101. Akselrod, G. M., Yang, Y. & Bowen, P. Tunable liquid crystal metasurfaces. US patent 10,665,953 (2020).

  102. Park, J. et al. All-solid-state spatial light modulator with independent phase and amplitude control for three-dimensional LiDAR applications. Nat. Nanotechnol. 16, 69–75 (2021).

    Article  CAS  Google Scholar 

  103. Yi, S. et al. Subwavelength angle-sensing photodetectors inspired by directional hearing in small animals. Nat. Nanotechnol. 13, 1143–1147 (2018).

    Article  CAS  Google Scholar 

  104. Lee, J., Kim, Y. J., Lee, K., Lee, S. & Kim, S. W. Time-of-flight measurement with femtosecond light pulses. Nat. Photon. 4, 716–720 (2010).

    Article  CAS  Google Scholar 

  105. Behroozpour, B., Sandborn, P. A. M., Wu, M. C. & Boser, B. E. Lidar system architectures and circuits. IEEE Commun. Mag. 55, 135–142 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by industry-university strategic grants funded by SL Corporation and LG Innotek, and the National Research Foundation (NRF) grants (grant numbers NRF-2019R1A2C3003129, NRF-2019R1A5A8080290, CAMM-2019M3A6B3030637, NRF-2018M3D1A1058998 and NRF-2015R1A5A1037668) funded by the Ministry of Science and ICT (MSIT), Republic of Korea. J.R. and P.G. acknowledge the Korea–France Science and Technology Amicable Relationships programme (grant number NRF-2020K1A3A1A21024374) funded by the MSIT, Republic of Korea. P.G. and R.J.M. acknowledge the financial support from the European Research Council (ERC POC) under the European Union’s Horizon 2020 research and innovation programme (Project i-LiDAR, grant number 874986). I.K. acknowledges the NRF Sejong Science fellowship (grant number NRF-2021R1C1C2004291) funded by the MSIT, Republic of Korea. J.J. acknowledges a fellowship from the Hyundai Motor Chung Mong-Koo Foundation and the NRF fellowship (grant number NRF-2019R1A6A3A13091132) funded by the Ministry of Education, Republic of Korea. The authors thank J. Park, J. Kim and S. Jang for discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Patrice Genevet or Junsuk Rho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Pierre Berini and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, I., Martins, R.J., Jang, J. et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol. 16, 508–524 (2021). https://doi.org/10.1038/s41565-021-00895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-021-00895-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing