Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Challenges and potential solutions for nanosensors intended for use with foods


Nanotechnology-adapted detection technologies could improve the safety and quality of foods, provide new methods to combat fraud and be useful tools in our arsenal against bioterrorism. Yet despite hundreds of published studies on nanosensors each year targeted to the food and agriculture space, there are few nanosensors on the market in this area and almost no nanotechnology-enabled methods employed by public health agencies for food analysis. This Review shows that the field is currently being held back by technical, regulatory, political, legal, economic, environmental health and safety, and ethical challenges. We explore these challenges in detail and provide suggestions about how they may be surmounted. Strategies that may have particular effectiveness include improving funding opportunities and publication venues for nanosensor validation, social science and patent landscape studies; prioritizing research and development of nanosensors that are specifically designed for rapid analysis in non-laboratory settings; and incorporating platform cost and adaptability into early design decisions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Summary of the peer-reviewed publication landscape over the 2007–2020 period for nanosensors that focus on foods.
Fig. 2: Survey of recent nanosensor patents using the Google Patents search engine.
Fig. 3: The EC’s TRL system.
Fig. 4: Categorization scheme.
Fig. 5: Classes of nanosensors.


  1. 1.

    Food safety. World Health Organization (2020).

  2. 2.

    Devleesschauwer, B., Haagsma, J. A., Mangen, M.-J. J., Lake, R. J. & Havelaar, A. H. in Food Safety Economics, Food Microbiology and Food Safety (ed. Roberts, T.) 107–122 (Springer, 2018).

  3. 3.

    Fritsche, J. Recent developments and digital perspectives in food safety and authenticity. J. Agric. Food Chem. 66, 7562–7567 (2018).

    CAS  Google Scholar 

  4. 4.

    Zhang, L., Peng, D., Liang, R.-P. & Qiu, J.-D. Graphene-based optical nanosensors for detection of heavy metal ions. Trends Anal. Chem. 102, 280–289 (2018).

    CAS  Google Scholar 

  5. 5.

    Wang, D. et al. Functionalized copper nanoclusters-based fluorescent probe with aggregation-induced emission property for selective detection of sulfide ions in food additives. J. Agric. Food Chem. 68, 11301–11308 (2020).

    CAS  Google Scholar 

  6. 6.

    Tang, N. et al. A fully integrated wireless flexible ammonia sensor fabricated by soft nano-lithography. ACS Sens. 4, 726–732 (2019).

    CAS  Google Scholar 

  7. 7.

    Xiao, X. et al. Rational engineering of chromic material as near-infrared ratiometric fluorescent nanosensor for H2S monitoring in real food samples. Sens. Actuators B 323, 128707 (2020).

    CAS  Google Scholar 

  8. 8.

    Yang, T. et al. Real-time monitoring of pesticide translocation in tomato plants by surface-enhanced Raman spectroscopy. Anal. Chem. 91, 2093–2099 (2019).

    CAS  Google Scholar 

  9. 9.

    Wu, Y. et al. Engineered gold nanoparticles as multicolor labels for simultaneous multi-mycotoxin detection on the immunochromatographic test strip nanosensor. Sens. Actuators B 316, 128107 (2020).

    CAS  Google Scholar 

  10. 10.

    Wang, Y., Schill, K. M., Fry, H. C. & Duncan, T. V. A quantum dot nanobiosensor for rapid detection of botulinum neurotoxin serotype E. ACS Sens. 5, 2118–2127 (2020).

    CAS  Google Scholar 

  11. 11.

    Xiong, Y., Zhang, D., Hao, Y., Liu, Y. & Si, M. Label-free detection of wild mushrooms DNA based on surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 51, 46–54 (2020).

    CAS  Google Scholar 

  12. 12.

    Rippa, M. et al. Octupolar plasmonic nanosensor based on ordered arrays of triangular Au nanopillars for selective rotavirus detection. ACS Appl. Nano Mater. 3, 4837–4844 (2020).

    CAS  Google Scholar 

  13. 13.

    Kearns, H., Goodacre, R., Jamieson, L. E., Graham, D. & Faulds, K. SERS detection of multiple antimicrobial-resistant pathogens using nanosensors. Anal. Chem. 89, 12666–12673 (2017).

    CAS  Google Scholar 

  14. 14.

    Jimenez-Falcao, S. et al. Enzyme-controlled mesoporous nanosensor for the detection of living Saccharomyces cerevisiae. Sens. Actuators B 303, 127197 (2020).

    CAS  Google Scholar 

  15. 15.

    Ehgartner, J. et al. Simultaneous determination of oxygen and pH inside microfluidic devices using core–shell nanosensors. Anal. Chem. 88, 9796–9804 (2016).

    CAS  Google Scholar 

  16. 16.

    Gupta, S. P., Pawbake, A. S., Sathe, B. R., Late, D. J. & Walke, P. S. Superior humidity sensor and photodetector of mesoporous ZnO nanosheets at room temperature. Sens. Actuators B 293, 83–92 (2019).

    CAS  Google Scholar 

  17. 17.

    Borisov, S. M., Mayr, T. & Klimant, I. Poly(styrene-block-vinylpyrrolidone) beads as a versatile material for simple fabrication of optical nanosensors. Anal. Chem. 80, 573–582 (2008).

    CAS  Google Scholar 

  18. 18.

    Nanotechnologies—Vocabulary—Part 1: Core Terms ISO/TS 80004-1:2015(en) (ISO, 2015).

  19. 19.

    Wang, Y. & Duncan, T. V. Nanoscale sensors for assuring the safety of food products. Curr. Opin. Biotechnol. 44, 74–86 (2017).

    CAS  Google Scholar 

  20. 20.

    Duncan, T. V. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. J. Colloid Interface Sci. 363, 1–24 (2011).

    CAS  Google Scholar 

  21. 21.

    Caon, T., Martelli, S. M. & Fakhouri, F. M. in Nanobiosensors (ed. Grumezescu, A. M.) 773–804 (Academic Press, 2017).

  22. 22.

    Srivastava, A. K., Dev, A. & Karmakar, S. Nanosensors and nanobiosensors in food and agriculture. Environ. Chem. Lett. 16, 161–182 (2018).

    CAS  Google Scholar 

  23. 23.

    Vikesland, P. J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 13, 651–660 (2018).

    CAS  Google Scholar 

  24. 24.

    Giraldo, J. P., Wu, H., Newkirk, G. M. & Kruss, S. Nanobiotechnology approaches for engineering smart plant sensors. Nat. Nanotechnol. 14, 541–553 (2019).

    CAS  Google Scholar 

  25. 25.

    Schebesta, H. & Candel, J. J. L. Game-changing potential of the EU’s Farm to Fork Strategy. Nat. Food 1, 586–588 (2020).

    Google Scholar 

  26. 26.

    Langer, J. et al. Present and future of surface-enhanced Raman scattering. ACS Nano 14, 28–117 (2020).

    CAS  Google Scholar 

  27. 27.

    Fuertes, G. et al. Intelligent packaging systems: sensors and nanosensors to monitor food quality and safety. J. Sens. 2016, 4046061 (2016).

    Google Scholar 

  28. 28.

    Kempahanumakkagari, S., Deep, A., Kim, K.-H., Kumar Kailasa, S. & Yoon, H.-O. Nanomaterial-based electrochemical sensors for arsenic—a review. Biosens. Bioelectron. 95, 106–116 (2017).

    CAS  Google Scholar 

  29. 29.

    Weng, X., Chen, L., Neethirajan, S. & Duffield, T. Development of quantum dots-based biosensor towards on-farm detection of subclinical ketosis. Biosens. Bioelectron. 72, 140–147 (2015).

    CAS  Google Scholar 

  30. 30.

    Weerathunge, P. et al. Ultrasensitive colorimetric detection of murine norovirus using NanoZyme aptasensor. Anal. Chem. 91, 3270–3276 (2019).

    CAS  Google Scholar 

  31. 31.

    Yang, T. et al. Mapping of pesticide transmission on biological tissues by surface enhanced Raman microscopy with a gold nanoparticle mirror. ACS Appl. Mater. Interfaces 11, 44894–44904 (2019).

    CAS  Google Scholar 

  32. 32.

    Hayter, C. S., Rasmussen, E. & Rooksby, J. H. Beyond formal university technology transfer: innovative pathways for knowledge exchange. J. Technol. Transf. 45, 1–8 (2020).

    Google Scholar 

  33. 33.

    Van Norman, G. A. & Eisenkot, R. Technology transfer: from the research bench to commercialization: part 2: the commercialization process. JACC Basic Transl. Sci. 2, 197–208 (2017).

    Google Scholar 

  34. 34.

    What is the process of technology transfer? Centers of Disease Control and Prevention (2021).

  35. 35.

    Héder, M. From NASA to EU: the evolution of the TRL scale in public sector innovation. Innov. J. 22, 3 (2017).

    Google Scholar 

  36. 36.

    Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions— Preparing for Our Future: Developing A Common Strategy for Key Enabling Technologies in the EU (Commission of the European Communities, 2009).

  37. 37.

    Milana, S. The lab-to-fab journey of 2D materials. Nat. Nanotechnol. 14, 919–921 (2019).

    CAS  Google Scholar 

  38. 38.

    Paliwal, R., Babu, R. J. & Palakurthi, S. Nanomedicine scale-up technologies: feasibilities and challenges. AAPS PharmSciTech 15, 1527–1534 (2014).

    CAS  Google Scholar 

  39. 39.

    Fadel, T. R. et al. Toward the responsible development and commercialization of sensor nanotechnologies. ACS Sens. 1, 207–216 (2016).

    CAS  Google Scholar 

  40. 40.

    Stavis, S. M., Fagan, J. A., Stopa, M. & Liddle, J. A. Nanoparticle manufacturing—heterogeneity through processes to products. ACS Appl. Nano Mater. 1, 4358–4385 (2018).

    CAS  Google Scholar 

  41. 41.

    Peng, H.-I., Krauss, T. D. & Miller, B. L. Aging induced Ag nanoparticle rearrangement under ambient atmosphere and consequences for nanoparticle-enhanced DNA biosensing. Anal. Chem. 82, 8664–8670 (2010).

    CAS  Google Scholar 

  42. 42.

    Shi, Y., Ji, Y., Hui, F. & Lanza, M. On the ageing mechanisms of graphene-on-metal electrodes. In Proc. 10th Spanish Conference on Electron Devices (CDE) (Eds. Álvarez, Á. L. & Coya, C.) 1–4 (IEEE, 2015).

  43. 43.

    Ahn, J. J., Kim, Y., Corley, E. A. & Scheufele, D. A. Laboratory safety and nanotechnology workers: an analysis of current guidelines in the USA. NanoEthics 10, 5–23 (2016).

    Google Scholar 

  44. 44.

    Lanza, G. A., Perez-Taborda, J. A. & Avila, A. Time temperature indicators (TTIs) based on silver nanoparticles for monitoring of perishables products. J. Phys. Conf. Ser. 1247, 012055 (2019).

    CAS  Google Scholar 

  45. 45.

    Duncan, T. V. & Pillai, K. Release of engineered nanomaterials from polymer nanocomposites: diffusion, dissolution, and desorption. ACS Appl. Mater. Interfaces 7, 2–19 (2015).

    CAS  Google Scholar 

  46. 46.

    Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances: Chemistry Recommendations (US FDA, 2007);

  47. 47.

    Werner, B. G., Koontz, J. L. & Goddard, J. M. Hurdles to commercial translation of next generation active food packaging technologies. Curr. Opin. Food Sci. 16, 40–48 (2017).

    Google Scholar 

  48. 48.

    Mitter, N. & Hussey, K. Moving policy and regulation forward for nanotechnology applications in agriculture. Nat. Nanotechnol. 14, 508–510 (2019).

    CAS  Google Scholar 

  49. 49.

    Horwitz, W. Evaluation of analytical methods used for regulation of foods and drugs. Anal. Chem. 54, 67–76 (1982).

    Google Scholar 

  50. 50.

    Guidelines for the Validation of Chemical Methods in Food, Feed, Cosmetics, and Veterinary Products 3rd edn (US FDA, 2019).

  51. 51.

    Guidelines for the Validation of Analytical Methods for the Detection of Microbial Pathogens in Foods and Feeds 3rd edn (US FDA, 2019).

  52. 52.

    Appendix K: Guidelines for Dietary Supplements and Botanicals, Part 1 AOAC Guidelines for Single-Laboratory Validation of Chemical Methods for Dietary Supplements and Botanicals (AOAC International, 2013).

  53. 53.

    UN FAO Codex Alimentarius Commission Procedural Manual 21st edn (Secretariat of the Joint FAO/WHO Food Standards Programme, 2014).

  54. 54.

    Taverniers, I., De Loose, M. & Van Bockstaele, E. Trends in quality in the analytical laboratory. I. Traceability and measurement uncertainty of analytical results. Trends Anal. Chem. 23, 480–490 (2004).

    CAS  Google Scholar 

  55. 55.

    Faucher, S., Le Coustumer, P. & Lespes, G. Nanoanalytics: history, concepts, and specificities. Environ. Sci. Pollut. Res. 26, 5267–5281 (2019).

    Google Scholar 

  56. 56.

    Taverniers, I., De Loose, M. & Van Bockstaele, E. Trends in quality in the analytical laboratory. II. Analytical method validation and quality assurance. Trends Anal. Chem. 23, 535–552 (2004).

    CAS  Google Scholar 

  57. 57.

    Horwitz, W. Problems of sampling and analytical methods. J. AOAC 59, 1197–1203 (1976).

    CAS  Google Scholar 

  58. 58.

    Tsai-hsuan, Ku. S. Forming interdisciplinary expertise: one organization’s journey on the road to translational nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 4, 366–377 (2012).

    Google Scholar 

  59. 59.

    Faigman, D. L., Slobogin, C. & Monahan, J. Gatekeeping science: using the structure of scientific research to distinguish between admissibility and weight in expert testimony. Northwest. Univ. Law Rev. 110, 859–904 (2016).

    Google Scholar 

  60. 60.

    Faigman, D. L. Is science different for lawyers? Science 297, 339–340 (2002).

    CAS  Google Scholar 

  61. 61.

    Rodricks, J. V. in Reference Manual on Scientific Evidence 3rd edn (ed. Council, N. R.) 503–548 (National Academies Press, 2011).

  62. 62.

    Murphy, M. J. in Veterinary Toxicology 3rd edn (ed Gupta, R. C.) 173–194 (Academic Press, 2018).

  63. 63.

    Report to the President—Forensic Science in Criminal Courts: Ensuring Scientific Validity of Feature-Comparison Methods (Executive Office of the President of the United States, President’s Council of Advisors on Science and Technology, 2016).

  64. 64.

    Muehlethaler, C., Leona, M. & Lombardi, J. R. Towards a validation of surface-enhanced Raman scattering (SERS) for use in forensic science: repeatability and reproducibility experiments. Forensic Sci. Int. 268, 1–13 (2016).

    CAS  Google Scholar 

  65. 65.

    Popa, C., Holvoet, K., Van Montfort, T., Groeneveld, F. & Simoens, S. Risk–return analysis of the biopharmaceutical industry as compared to other industries. Front. Pharmacol. 9, 1108 (2018).

    Google Scholar 

  66. 66.

    Ledley, F. D., McCoy, S. S., Vaughan, G. & Cleary, E. G. Profitability of large pharmaceutical companies compared with other large public companies. JAMA 323, 834–843 (2020).

    Google Scholar 

  67. 67.

    Han, J.-W., Ruiz-Garcia, L., Qian, J.-P. & Yang, X.-T. Food packaging: a comprehensive review and future trends. Compr. Rev. Food Sci. Food Saf. 17, 860–877 (2018).

    Google Scholar 

  68. 68.

    Chowdhury, P., Gogoi, M., Borchetia, S. & Bandyopadhyay, T. Nanotechnology applications and intellectual property rights in agriculture. Environ. Chem. Lett. 15, 413–419 (2017).

    CAS  Google Scholar 

  69. 69.

    Morris, E. M. The irrelevance of nanotechnology patents. Conn. Law Rev. 49, 499–552 (2016).

    Google Scholar 

  70. 70.

    Zingg, R. & Fischer, M. The nanotechnology patent thicket revisited. J. Nanopart. Res. 20, 267 (2018).

    Google Scholar 

  71. 71.

    Rothaermel, F. T. & Thursby, M. The nanotech versus the biotech revolution: sources of productivity in incumbent firm research. Res. Policy 36, 832–849 (2007).

    Google Scholar 

  72. 72.

    Atalla, K. et al. in Wireless Computing in Medicine (ed Eshaghian‐Wilner, M. M.) 567–600 (Wiley, 2016).

  73. 73.

    Genet, C., Errabi, K. & Gauthier, C. Which model of technology transfer for nanotechnology? A comparison with biotech and microelectronics. Technovation 32, 205–215 (2012).

    Google Scholar 

  74. 74.

    Wu, L., Zhu, H., Chen, H. & Roco, M. C. Comparing nanotechnology landscapes in the US and China: a patent analysis perspective. J. Nanopart. Res. 21, 180 (2019).

    Google Scholar 

  75. 75.

    Weiss, K. D. & Almeda, L. G. Competitive intelligence—understanding current trends in the patent landscape for nanomaterials. In Proc. 17th IEEE 17th International Conference on Nanotechnology (IEEE-NANO) 1003–1009 (IEEE, 2017).

  76. 76.

    Tahmooresnejad, L. & Beaudry, C. Collaboration or funding: lessons from a study of nanotechnology patenting in Canada and the United States. J. Technol. Transf. 44, 741–777 (2019).

    Google Scholar 

  77. 77.

    Rausand, M. & Utne, I. B. Product safety—principles and practices in a life cycle perspective. Saf. Sci. 47, 939–947 (2009).

    Google Scholar 

  78. 78.

    Duncan, T. V. & Singh, G. in: Nanotechnology in Foods 2nd edn (eds Chaudhry, Q. et al.) Ch. 8 (Royal Society of Chemistry, 2017).

  79. 79.

    Zhang, M. et al. Detection of engineered nanoparticles in aquatic environments: current status and challenges in enrichment, separation, and analysis. Environ. Sci. Nano 6, 709–735 (2019).

    CAS  Google Scholar 

  80. 80.

    Fadeel, B. et al. Advanced tools for the safety assessment of nanomaterials. Nat. Nanotechnol. 13, 537–543 (2018).

    CAS  Google Scholar 

  81. 81.

    Weiner, R. G., Sharma, A., Xu, H., Gray, P. J. & Duncan, T. V. Assessment of mass transfer from poly(ethylene) nanocomposites containing noble-metal nanoparticles: a systematic study of embedded particle stability. ACS Appl. Nano Mater. 1, 5188–5196 (2018).

    CAS  Google Scholar 

  82. 82.

    Gray, P. J. et al. Influence of different acids on the transport of CdSe quantum dots from polymer nanocomposites to food simulants. Environ. Sci. Technol. 52, 9468–9477 (2018).

    CAS  Google Scholar 

  83. 83.

    Bott, J. & Franz, R. Investigations into the potential abrasive release of nanomaterials due to material stress conditions—part A: carbon black nano-particulates in plastic and rubber composites. Appl. Sci. 9, 214 (2019).

    CAS  Google Scholar 

  84. 84.

    Addo Ntim, S. et al. Effects of consumer use practices on nanosilver release from commercially available food contact materials. Food Addit. Contam. A 35, 2279–2290 (2018).

    CAS  Google Scholar 

  85. 85.

    Liu, C., Leng, W. & Vikesland, P. J. Controlled evaluation of the impacts of surface coatings on silver nanoparticle dissolution rates. Environ. Sci. Technol. 52, 2726–2734 (2018).

    CAS  Google Scholar 

  86. 86.

    Molleman, B. & Hiemstra, T. Time, pH, and size dependency of silver nanoparticle dissolution: the road to equilibrium. Environ. Sci. Nano 4, 1314–1327 (2017).

    CAS  Google Scholar 

  87. 87.

    Garg, S., Rong, H., Miller, C. J. & Waite, T. D. Oxidative dissolution of silver nanoparticles by chlorine: implications to silver nanoparticle fate and toxicity. Environ. Sci. Technol. 50, 3890–3896 (2016).

    CAS  Google Scholar 

  88. 88.

    Babik, K. R., Dahm, M. M., Dunn, K. H., Dunn, K. L. & Schubauer-Berigan, M. K. Characterizing workforces exposed to current and emerging non-carbonaceous nanomaterials in the U.S. J. Occup. Environ. Hygiene 15, 44–56 (2018).

    CAS  Google Scholar 

  89. 89.

    Iavicoli, I., Leso, V., Beezhold, D. H. & Shvedova, A. A. Nanotechnology in agriculture: opportunities, toxicological implications, and occupational risks. Toxicol. Appl. Pharmacol. 329, 96–111 (2017).

    CAS  Google Scholar 

  90. 90.

    Salieri, B., Turner, D. A., Nowack, B. & Hischier, R. Life cycle assessment of manufactured nanomaterials: Where are we? NanoImpact 10, 108–120 (2018).

    Google Scholar 

  91. 91.

    Bandodkar, A. J., Jeerapan, I. & Wang, J. Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016).

    CAS  Google Scholar 

  92. 92.

    Upadhyayula, V. K. K., Gadhamshetty, V., Shanmugam, K., Souihi, N. & Tysklind, M. Advancing game changing academic research concepts to commercialization: a life cycle assessment (LCA) based sustainability framework for making informed decisions in technology valley of death (TVD). Resour. Conserv. Recycl. 133, 404–416 (2018).

    Google Scholar 

  93. 93.

    Buckley, J. A., Thompson, P. B. & Whyte, K. P. Collingridge’s dilemma and the early ethical assessment of emerging technology: the case of nanotechnology enabled biosensors. Technol. Soc. 48, 54–63 (2017).

    Google Scholar 

  94. 94.

    Li, Z. et al. Non-invasive plant disease diagnostics enabled by smartphone-based fingerprinting of leaf volatiles. Nat. Plants 5, 856–866 (2019).

    CAS  Google Scholar 

  95. 95.

    Ye, Y. et al. Portable smartphone-based QDs for the visual onsite monitoring of fluoroquinolone antibiotics in actual food and environmental samples. ACS Appl. Mater. Interfaces 12, 14552–14562 (2020).

    CAS  Google Scholar 

  96. 96.

    Su, D. et al. Smartphone-assisted robust sensing platform for on-site quantitation of 2,4-dichlorophenoxyacetic acid using red emissive carbon dots. Anal. Chem. 92, 12716–12724 (2020).

    CAS  Google Scholar 

  97. 97.

    Li, Z. et al. Agricultural nanodiagnostics for plant diseases: recent advances and challenges. Nanoscale Adv. 2, 3083–3094 (2020).

    CAS  Google Scholar 

  98. 98.

    Yigezu, Y. A. et al. Enhancing adoption of agricultural technologies requiring high initial investment among smallholders. Technol. Forecast. Soc. Change 134, 199–206 (2018).

    Google Scholar 

  99. 99.

    Balehegn, M. et al. Improving adoption of technologies and interventions for increasing supply of quality livestock feed in low- and middle-income countries. Glob. Food Sec. 26, 100372 (2020).

    Google Scholar 

  100. 100.

    Genus, A. & Stirling, A. Collingridge and the dilemma of control: towards responsible and accountable innovation. Res. Policy 47, 61–69 (2018).

    Google Scholar 

  101. 101.

    Duncan, T. V. The communication challenges presented by nanofoods. Nat. Nanotechnol. 6, 683–688 (2011).

    CAS  Google Scholar 

  102. 102.

    Bartolucci, C. et al. Green nanomaterials fostering agrifood sustainability. Trends Anal. Chem. 125, 115840 (2020).

    CAS  Google Scholar 

  103. 103.

    Boholm, Å. & Larsson, S. What is the problem? A literature review on challenges facing the communication of nanotechnology to the public. J. Nanopart. Res. 21, 86 (2019).

    Google Scholar 

  104. 104.

    Jacobsen, L. F. et al. Improving internal communication between marketing and technology functions for successful new food product development. Trends Food Sci. Technol. 37, 106–114 (2014).

    CAS  Google Scholar 

  105. 105.

    Siegrist, M. Factors influencing public acceptance of innovative food technologies and products. Trends Food Sci. Technol. 19, 603–608 (2008).

    CAS  Google Scholar 

  106. 106.

    Klerkx, L. & Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Sec. 24, 100347 (2020).

    Google Scholar 

  107. 107.

    Zang, F. et al. Ultrasensitive ebola virus antigen sensing via 3D nanoantenna arrays. Adv. Mater. 31, 1902331 (2019).

    Google Scholar 

  108. 108.

    Kurdekar, A. D. et al. Streptavidin-conjugated gold nanoclusters as ultrasensitive fluorescent sensors for early diagnosis of HIV infection. Sci. Adv. 4, eaar6280 (2018).

    CAS  Google Scholar 

  109. 109.

    Agrawal, A., Majdi, J., Clouse, K. A. & Stantchev, T. Electron-beam-lithographed nanostructures as reference materials for label-free scattered-light biosensing of single filoviruses. Sensors 18, 1670 (2018).

    Google Scholar 

  110. 110.

    Wang, Y., Fry, H. C., Skinner, G. E., Schill, K. M. & Duncan, T. V. Detection and quantification of biologically active botulinum neurotoxin serotypes A and B using a forster resonance energy transfer-based quantum dot nanobiosensor. ACS Appl. Mater. Interfaces 9, 31446–31457 (2017).

    CAS  Google Scholar 

  111. 111.

    New Era of Smarter Food Safety: FDA’s Blueprint for the Future (US FDA, 2020).

  112. 112.

    Lynn, G. S. & Akgün, A. E. Innovation strategies under uncertainty: a contingency approach for new product development. Eng. Manage. J. 10, 11–18 (1998).

    Google Scholar 

Download references


Any findings, conclusions and recommendations presented in this article are those of the authors and do not necessarily represent the views of the US Food and Drug Administration.

Author information



Corresponding author

Correspondence to Timothy V. Duncan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Melanie Kah and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, T., Duncan, T.V. Challenges and potential solutions for nanosensors intended for use with foods. Nat. Nanotechnol. 16, 251–265 (2021).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research