Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structural origin of the high-voltage instability of lithium cobalt oxide


Layered lithium cobalt oxide (LiCoO2, LCO) is the most successful commercial cathode material in lithium-ion batteries. However, its notable structural instability at potentials higher than 4.35 V (versus Li/Li+) constitutes the major barrier to accessing its theoretical capacity of 274 mAh g−1. Although a few high-voltage LCO (H-LCO) materials have been discovered and commercialized, the structural origin of their stability has remained difficult to identify. Here, using a three-dimensional continuous rotation electron diffraction method assisted by auxiliary high-resolution transmission electron microscopy, we investigate the structural differences at the atomistic level between two commercial LCO materials: a normal LCO (N-LCO) and a H-LCO. These powerful tools reveal that the curvature of the cobalt oxide layers occurring near the surface dictates the structural stability of the material at high potentials and, in turn, the electrochemical performances. Backed up by theoretical calculations, this atomistic understanding of the structure–performance relationship for layered LCO materials provides useful guidelines for future design of new cathode materials with superior structural stability at high voltages.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Electrochemical and in-situ PXRD characterizations of N-LCO and H-LCO during their first charge–discharge process.
Fig. 2: cRED schematic and the combined cRED and HRTEM characterizations of pristine LCOs.
Fig. 3: Combined cRED and HRTEM characterizations of charged LCOs.
Fig. 4: Theoretical calculations of curved LCO structure.
Fig. 5: Schematic illustration of the LCO structural evolutions during charge.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. 1.

    Liu, Y. Y., Zhu, Y. Y. & Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 4, 540–550 (2019).

    Article  Google Scholar 

  2. 2.

    Li, M., Lu, J., Chen, Z. W. & Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 30, 1800561 (2018).

    Article  CAS  Google Scholar 

  3. 3.

    House, R. A. et al. Superstructure control of first-cycle voltage hysteresis in oxygen-redox cathodes. Nature 577, 502–508 (2020).

    CAS  Article  Google Scholar 

  4. 4.

    Li, W. D., Erickson, E. M. & Manthiram, A. High-nickel layered oxide cathodes for lithium-based automotive batteries. Nat. Energy 5, 26–34 (2020).

    CAS  Article  Google Scholar 

  5. 5.

    Mizushima, K., Jones, P. C., Wiseman, P. J. & Goodenough, J. B. LixCoO2 (0 < x ≤ 1): a new cathode material for batteries of high energy density. Mat. Res. Bull. 15, 783–789 (1980).

    CAS  Article  Google Scholar 

  6. 6.

    Shimoda, K. et al. In situ NMR observation of the lithium extraction/insertion from LiCoO2 cathode. Electrochim. Acta 108, 343–349 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Amatucci, G. G., Tarascon, J. M. & Klein, L. C. CoO2, the end member of the LixCoO2 solid solution. J. Electrochem. Soc. 143, 1114–1123 (1996).

    CAS  Article  Google Scholar 

  8. 8.

    Wang, L. L., Chen, B. B., Ma, J., Cui, G. L. & Chen, L. Q. Reviving lithium cobalt oxide-based lithium secondary batteries–toward a higher energy density. Chem. Soc. Rev. 47, 6505–6602 (2018).

    CAS  Article  Google Scholar 

  9. 9.

    Wang, X., Wang, X. Y. & Lu, Y. Y. Realizing high voltage lithium cobalt oxide in lithium-ion batteries. Ind. Eng. Chem. Res. 58, 10119–10139 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Kalluri, S. et al. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Adv. Energy Mater. 7, 1601507 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Zhang, J.-N. et al. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6 V. Nat. Energy 4, 594–603 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Wang, L. L. et al. A novel bifunctional self-stabilized strategy enabling 4.6 V LiCoO2 with excellent long-term cyclability and high-rate capacity. Adv. Sci. 6, 1900355 (2019).

    Article  CAS  Google Scholar 

  13. 13.

    Liu, Q. et al. Approaching the capacity limit of lithium cobalt oxide in lithium ion batteries via lanthanum and aluminium doping. Nat. Energy 3, 936–943 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Grey, C. P. & Dupré, N. NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493–4512 (2004).

    CAS  Article  Google Scholar 

  15. 15.

    Tripathi, A. M., Su, W. N. & Joe-Hwang, B. In situ analytical techniques for battery interface analysis. Chem. Soc. Rev. 47, 736–851 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Zachman, M. J., Tu, Z. Y., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Li, Y. Z. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    CAS  Article  Google Scholar 

  18. 18.

    Karakulina, O. M., Demortière, A., Dachraoui, W., Abakumov, A. M. & Hadermann, J. In situ electron diffraction tomography using a liquid-electrochemical transmission electron microscopy cell for crystal structure determination of cathode materials for Li-Ion batteries. Nano Lett. 18, 6286–6291 (2018).

    CAS  Article  Google Scholar 

  19. 19.

    Hadermann, J. & Abakumov, A. M. Structure solution and refinement of metal-ion battery cathode materials using electron diffraction tomography. Acta Crystallogr. B75, 485–494 (2019).

    Google Scholar 

  20. 20.

    Hadermann, J. et al. Solving the structure of Li ion battery materials with precession electron diffraction: application to Li2CoPO4F. Chem. Mater. 23, 3540–3545 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Willhammar, T. et al. Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nat. Chem. 4, 188–194 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    Li, J. et al. Discovery of complex metal oxide materials by rapid phase identification and structure determination. J. Am. Chem. Soc. 141, 4990–4996 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Ma, T. Q. et al. Observation of interpenetration isomerism in covalent organic frameworks. J. Am. Chem. Soc. 140, 6763–6766 (2019).

    Article  CAS  Google Scholar 

  24. 24.

    Chen, Z. H., Lu, Z. H. & Dahn, J. R. Staging phase transition in LixCoO2. J. Electrochem. Soc. 149, A1604–A1609 (2002).

    CAS  Article  Google Scholar 

  25. 25.

    Lyu, Y. et al. An overview on the advances of LiCoO2 cathodes for lithium-ion batteries. Adv. Energy Mater. 11, 2000982 (2020).

    Article  CAS  Google Scholar 

  26. 26.

    Seong, W. M., Yoon, K., Lee, M. H., Jung, S.-K. & Kang, K. Unveiling the intrinsic cycle reversibility of a LiCoO2 electrode at 4.8-V cutoff voltage through subtractive surface modification for lithium-ion batteries. Nano Lett. 19, 29–37 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Hirooka, M. et al. Improvement of float charge durability for LiCoO2 electrodes under high voltage and storage temperature by suppressing O1-phase transition. J. Power Sources 463, 228127 (2020).

    CAS  Article  Google Scholar 

  28. 28.

    Zhu, Z. et al. A surface Se-substituted LiCo[O2–δSeδ] cathode with ultrastable high-voltage cycling in pouch full-cells. Adv. Mater. 32, 2005182 (2020).

    CAS  Article  Google Scholar 

  29. 29.

    Lu, X. et al. New insight into the atomic structure of electrochemically delithiated O3-Li(1–x)CoO2 (0 ≤ x ≤ 0.5) nanoparticles. Nano Lett. 12, 6192–6197 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Fasolino, A., Los, J. H. & Katsnelson, M. I. Intrinsic ripples in graphene. Nat. Mater. 6, 858–861 (2007).

    CAS  Article  Google Scholar 

  31. 31.

    Kumar, P., Agrawal, K. V., Tsapatsis, M. & Mkhoyan, K. A. Quantification of thickness and wrinkling of exfoliated two-dimensional zeolite nanosheet. Nat. Commun. 6, 7128 (2015).

    Article  Google Scholar 

  32. 32.

    Rooney, A. P. et al. Anomalous twin boundaries in two dimensional materials. Nat. Commun. 9, 3597 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Tang, D. M. et al. Nanomechanical cleavage of molybdenum disulphide atomic layers. Nat. Commun. 5, 3631 (2014).

    Article  Google Scholar 

  34. 34.

    Zheng, J. et al. Tuning of thermal stability in layered Li(NixMnyCoz)O2. J. Am. Chem. Soc. 138, 13326–13334 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Coelho, A. A. TOPAS and TOPAS-Academic: an optimization program integrating computer algebra and crystallographic objects written in C++. J. Appl. Cryst. 51, 210–218 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Jia, W. L. et al. Fast plane wave density functional theory molecular dynamics calculations on multi-GPU machines. J. Comput. Phys. 251, 102–115 (2013).

    Article  Google Scholar 

  37. 37.

    Jia, W. L. et al. The analysis of a plane wave pseudopotential density functional theory code on a GPU machine. Comput. Phys. Commun. 184, 9–18 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Hamann, D. R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 88, 1–10 (2013).

    Article  CAS  Google Scholar 

  39. 39.

    Schlipf, M. & Gygi, F. Optimization algorithm for the generation of ONCV pseudopotentials. Comput. Phys. Commun. 196, 36–44 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  CAS  Google Scholar 

  41. 41.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  42. 42.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  CAS  Google Scholar 

  43. 43.

    Pack, J. D. & Monkhorst, H. J. “Special points for brillouin-zone integrations”—a reply. Phys. Rev. B 16, 1748–1749 (1977).

    Article  Google Scholar 

Download references


This research is financially supported by the National Key R&D Programme of China (no. 2016YFB0700600), Guangdong Innovative Team Programme (2013N080), Guangdong Key-lab Project (no. 2017B0303010130), Shenzhen Science and Technology Research Grant (no. ZDSYS20170728102618), National Basic Research Programme of China (nos. 2013CB933402 and 2016YFA0301004) and National Natural Science Foundation of China (nos. 21527803, 21621061 and 21871009).

Author information




F.P., J.S., K.X. and C.L. conceived the work and designed the experiments. Jianyuan Li, C.L. and W.H. carried out the electrochemical measurements. Jianyuan Li, C.L., P.C. and Y.H. performed the in-situ PXRD experiments. Jianyuan Li and C.L. carried out the cRED and HRTEM characterizations. Y.Q., P.C. and Jian Li assisted with the cRED data analyses. C.L. conducted the FIB treatments. M.W. performed the theoretical calculations. C.L. and W.Z. carried out the SEM and EDS measurements. Jianyuan Li and C.L. performed the XPS measurements. C.L. carried out the ICP-AES experiments. M.Z. collected the synchrotron PXRD data and C.L. carried out the structure refinements. M.Z. and C.D. helped the PXRD analyses. K.Y. performed the DEMS measurements. Z.X. and X.W. helped with the TEM experiments. Jianyuan Li, C.L., K.X., J.S. and F.P. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Cong Lin or Kang Xu or Junliang Sun or Feng Pan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Shi Xue Dou, Michael Toney and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Tables 1–5, Notes 1–2 and refs. 1–20.

Supplementary Video 1

Data collection and reconstructed reciprocal lattice of cRED for H-LCO-P.

Supplementary Video 2

Data collection and reconstructed reciprocal lattice of cRED for N-LCO-P.

Supplementary Video 3

Data collection and reconstructed reciprocal lattice of cRED for N-LCO-4.2.

Supplementary Video 4

Data collection and reconstructed reciprocal lattice of cRED for H-LCO-4.2.

Supplementary Video 5

Data collection and reconstructed reciprocal lattice of cRED for N-LCO-4.5.

Supplementary Video 6

Data collection and reconstructed reciprocal lattice of cRED for H-LCO-4.5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Lin, C., Weng, M. et al. Structural origin of the high-voltage instability of lithium cobalt oxide. Nat. Nanotechnol. (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research