Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fano-resonant ultrathin film optical coatings

Abstract

Optical coatings are integral components of virtually every optical instrument. However, despite being a century-old technology, there are only a handful of optical coating types. Here, we introduce a type of optical coatings that exhibit photonic Fano resonance, or a Fano-resonant optical coating (FROC). We expand the coupled mechanical oscillator description of Fano resonance to thin-film nanocavities. Using FROCs with thicknesses in the order of 300 nm, we experimentally obtained narrowband reflection akin to low-index-contrast dielectric Bragg mirrors and achieved control over the reflection iridescence. We observed that semi-transparent FROCs can transmit and reflect the same colour as a beam splitter filter, a property that cannot be realized through conventional optical coatings. Finally, FROCs can spectrally and spatially separate the thermal and photovoltaic bands of the solar spectrum, presenting a possible solution to the dispatchability problem in photovoltaics, that is, the inability to dispatch solar energy on demand. Our solar thermal device exhibited power generation of up to 50% and low photovoltaic cell temperatures (~30 °C), which could lead to a six-fold increase in the photovoltaic cell lifetime.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fano resonance in thin-film optical coatings.
Fig. 2: Demonstration and properties of Fano-resonant optical coatings.
Fig. 3: FROC as a beam splitter filter.
Fig. 4: FROCs for hybrid thermal-electric solar energy conversion.

Data availability

The raw numerical data for the figures in the manuscript, as well as the code on the thin-film coupled oscillator theory, are available via GitHub at https://github.com/hincz-lab/Fano-resonant-ultrathin-film-optical-coatings-FROC.

References

  1. 1.

    Limonov, M. F., Rybin, M. V., Poddubny, A. N. & Kivshar, Y. S. Fano resonances in photonics. Nat. Photonics 11, 543–554 (2017).

    CAS  Google Scholar 

  2. 2.

    Miroshnichenko, A. E. et al. Fano resonances: a discovery that was not made 100 years ago. Opt. Photonics News 19, 48–48 (2008).

    Google Scholar 

  3. 3.

    Giannini, V., Francescato, Y., Amrania, H., Phillips, C. C. & Maier, S. A. Fano resonances in nanoscale plasmonic systems: a parameter-free modeling approach. Nano Lett. 11, 2835–2840 (2011).

    CAS  Google Scholar 

  4. 4.

    Mukherjee, S. et al. Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett. 10, 2694–2701 (2010).

    CAS  Google Scholar 

  5. 5.

    Zhang, S., Bao, K., Halas, N. J., Xu, H. & Nordlander, P. Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett. 11, 1657–1663 (2011).

    CAS  Google Scholar 

  6. 6.

    Luk’yanchuk, B. et al. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010).

    Google Scholar 

  7. 7.

    Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135 (2010).

    CAS  Google Scholar 

  8. 8.

    Verellen, N. et al. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 9, 1663–1667 (2009).

    CAS  Google Scholar 

  9. 9.

    Fedotov, V. A., Rose, M., Prosvirnin, S. L., Papasimakis, N. & Zheludev, N. I. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys. Rev. Lett. 99, 147401 (2007).

    CAS  Google Scholar 

  10. 10.

    Yang, Y., Kravchenko, I. I., Briggs, D. P. & Valentine, J. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat. Commun. 5, 5753 (2014).

    CAS  Google Scholar 

  11. 11.

    Shen, Y. et al. Structural colors from Fano resonances. ACS Photonics 2, 27–32 (2015).

    CAS  Google Scholar 

  12. 12.

    Khurgin, J. B. Slow light in various media: a tutorial. Adv. Opt. Photon. 2, 287–318 (2010).

    Google Scholar 

  13. 13.

    Miroshnichenko, A. E., Flach, S. & Kivshar, Y. S. Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010).

    CAS  Google Scholar 

  14. 14.

    Ruan, B. et al. Ultrasensitive terahertz biosensors based on Fano resonance of a graphene/waveguide hybrid structure. Sensors 17, 1924 (2017).

    Google Scholar 

  15. 15.

    Wu, C. et al. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2011).

    Google Scholar 

  16. 16.

    Sounas, D. L. & Alù, A. Fundamental bounds on the operation of Fano nonlinear isolators. Phys. Rev. B 97, 115431 (2018).

    CAS  Google Scholar 

  17. 17.

    Cordaro, A. et al. High-index dielectric metasurfaces performing mathematical operations. Nano Lett. 19, 8418–8423 (2019).

    CAS  Google Scholar 

  18. 18.

    Sonnefraud, Y. et al. Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4, 1664–1670 (2010).

    CAS  Google Scholar 

  19. 19.

    Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nat. Mater. 8, 758–762 (2009).

    CAS  Google Scholar 

  20. 20.

    Macleod, H. A. Thin Film Optical Filters, 4th edn (Adam Hilger, 1986).

  21. 21.

    Gallais, L. & Commandré, M. Laser-induced damage thresholds of bulk and coating optical materials at 1030 nm, 500 fs. Appl. Opt. 53, A186–A196 (2014).

    CAS  Google Scholar 

  22. 22.

    Anjum, F., Fryauf, D. M., Ahmad, R., Phillips, A. C. & Kobayashi, N. P. Improving silver mirrors with aluminum oxynitride protection layers: variation in refractive index with controlled oxygen content by radiofrequency magnetron sputtering. IEEE Spect. 26, 34–35 (2018).

    Google Scholar 

  23. 23.

    Tannas, L. E. Flat-panel displays displace large, heavy, power-hungry CRTs. IEEE Spectr. 26, 34–35 (1989).

    Google Scholar 

  24. 24.

    Hornbeck, L. J. Digital light processing for high-brightness high-resolution applications. In Proc. SPIE 3013, Projection Displays III (SPIE, 1997).

  25. 25.

    Dobrowolski, J. A., Ho, F. C. & Waldorf, A. Research on thin film anticounterfeiting coatings at the National Research Council of Canada. Appl. Opt. 28, 2702–2717 (1989).

    CAS  Google Scholar 

  26. 26.

    Granqvist, C. G. & Hjortsberg, A. Surfaces for radiative cooling: silicon monoxide films on aluminum. Appl. Phys. Lett. 36, 139–141 (1980).

    CAS  Google Scholar 

  27. 27.

    Raman, A. P., Anoma, M. A., Zhu, L., Rephaeli, E. & Fan, S. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    CAS  Google Scholar 

  28. 28.

    Chen, Z., Zhu, L., Raman, A. & Fan, S. Radiative cooling to deep sub-freezing temperatures through a 24-h day–night cycle. Nat. Commun. 7, 13729 (2016).

    CAS  Google Scholar 

  29. 29.

    Chen, D. Anti-reflection (AR) coatings made by sol–gel processes: a review. Sol. Energy Mater. Sol. Cells 68, 313–336 (2001).

    CAS  Google Scholar 

  30. 30.

    Li, Z., Butun, S. & Aydin, K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films. ACS Photonics 2, 183–188 (2015).

    CAS  Google Scholar 

  31. 31.

    ElKabbash, M., Iram, S., Letsou, T., Hinczewski, M. & Strangi, G. Designer perfect light absorption using ultrathin lossless dielectrics on absorptive substrates. Adv. Opt. Mater. 6, 1800672 (2018).

    Google Scholar 

  32. 32.

    Kats, M. A., Blanchard, R., Genevet, P. & Capasso, F. Nanometre optical coatings based on strong interference effects in highly absorbing media. Nat. Mater. 12, 20–24 (2012).

    Google Scholar 

  33. 33.

    ElKabbash, M. et al. Iridescence-free and narrowband perfect light absorption in critically coupled metal high-index dielectric cavities. Opt. Lett. 42, 3598–3601 (2017).

    CAS  Google Scholar 

  34. 34.

    Svensson, J. S. E. M. & Granqvist, C. G. Electrochromic coatings for ‘smart windows’. Sol. Energy Mater. 12, 391–402 (1985).

    CAS  Google Scholar 

  35. 35.

    Thielsch, R.in Optical Interference Coatings (eds Kaiser, N. & Pulker, H. K.) 257–279 (Springer, 2003).

  36. 36.

    Optical Thin Films and Coatings, From Materials to Applications 2nd edn (Elsevier, 2013).

  37. 37.

    Fan, S. Thermal photonics and energy applications. Joule 1, 264–273 (2017).

    CAS  Google Scholar 

  38. 38.

    Fann, C.-H. et al. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms. Opt. Express 27, 27917–27926 (2019).

    CAS  Google Scholar 

  39. 39.

    ElKabbash, M. et al. Hydrogen sensing using thin-film perfect light absorber. ACS Photonics 6, 1889–1894 (2019).

    CAS  Google Scholar 

  40. 40.

    Sreekanth, K. V. et al. Generalized Brewster angle effect in thin-film optical absorbers and its application for graphene hydrogen sensing. ACS Photonics https://doi.org/10.1021/acsphotonics.9b00564 (2019).

    Article  Google Scholar 

  41. 41.

    Gallinet, B. in Fano Resonances in Optics and Microwaves (eds Kamenetskii, E. et al.) 109–136 (Springer, 2018).

  42. 42.

    Joe, Y. S., Satanin, A. M. & Kim, C. S. Classical analogy of Fano resonances. Phys. Scr. 74, 259–266 (2006).

    CAS  Google Scholar 

  43. 43.

    Ismail, N., Kores, C. C., Geskus, D. & Pollnau, M. Fabry-Pérot resonator: spectral line shapes, generic and related Airy distributions, linewidths, finesses, and performance at low or frequency-dependent reflectivity. Opt. Express 24, 16366–16389 (2016).

    Google Scholar 

  44. 44.

    Vorobyev, A. Y. & Guo, C. Colorizing metals with femtosecond laser pulses. Appl. Phys. Lett. 92, 041914 (2008).

    Google Scholar 

  45. 45.

    Fu, S. et al. Review of recent progress on single-frequency fiber lasers [Invited]. J. Opt. Soc. Am. B 34, A49–A62 (2017).

    CAS  Google Scholar 

  46. 46.

    Lee, K.-T., Ji, C., Banerjee, D. & Guo, L. J. Angular- and polarization-independent structural colors based on 1D photonic crystals. Laser Photon. Rev. 9, 354–362 (2015).

    CAS  Google Scholar 

  47. 47.

    Branz, H. M., Regan, W., Gerst, K. J., Borak, J. B. & Santori, E. A. Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity. Energy Environ. Sci. 8, 3083–3091 (2015).

    CAS  Google Scholar 

  48. 48.

    Mojiri, A., Taylor, R., Thomsen, E. & Rosengarten, G. Spectral beam splitting for efficient conversion of solar energy—a review. Renew. Sustain. Energy Rev. 28, 654–663 (2013).

    Google Scholar 

  49. 49.

    Vossier, A. et al. Performance bounds and perspective for hybrid solar photovoltaic/thermal electricity-generation strategies. Sustain. Energy Fuels 2, 2060–2067 (2018).

    CAS  Google Scholar 

  50. 50.

    Maghanga, C. M., Niklasson, G. A., Granqvist, C. G. & Mwamburi, M. Spectrally selective reflector surfaces for heat reduction in concentrator solar cells: modeling and applications of TiO2:Nb-based thin films. Appl. Opt. 50, 3296–3302 (2011).

    CAS  Google Scholar 

  51. 51.

    Wang, Y., Liu, H. & Zhu, J. Solar thermophotovoltaics: progress, challenges, and opportunities. APL Mater. 7, 080906 (2019).

    Google Scholar 

  52. 52.

    Sun, X., Sun, Y., Zhou, Z., Muhammad, A. & Bermel, P. Radiative sky cooling: fundamental physics, materials, structures, and applications. Nanophotonics 6, 997–1015 (2017).

    Google Scholar 

  53. 53.

    Singh, S. C. et al. Solar-trackable super-wicking black metal panel for photothermal water sanitation. Nat. Sustain. https://doi.org/10.1038/s41893-020-0566-x (2020).

  54. 54.

    Denholm, D., O‘Connell, M., Brinkman, G. & Jorgenson, J. Overgeneration from Solar Energy in California: A Field Guide to the Duck Chart (National Renewable Energy Laboratory, 2015).

  55. 55.

    Sreekanth, K. V. et al. Phase-change-material-based low-loss visible-frequency hyperbolic metamaterials for ultrasensitive label-free biosensing. Adv. Opt. Mater. 7, 1900081 (2019).

    Google Scholar 

  56. 56.

    Zhan, Z. et al. Enhancing thermoelectric output power via radiative cooling with nanoporous alumina. Nano Energy 65, 104060 (2019).

    CAS  Google Scholar 

  57. 57.

    Kraemer, D. et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration. Nat. Mater. 10, 532–538 (2011).

    CAS  Google Scholar 

  58. 58.

    Jalil, S. A. et al. Spectral absorption control of femtosecond laser-treated metals and application in solar-thermal devices. Light. Sci. Appl. 9, 14 (2020).

    CAS  Google Scholar 

  59. 59.

    Xu, Y. & Miroshnichenko, A. E. Reconfigurable nonreciprocity with a nonlinear Fano diode. Phys. Rev. B 89, 134306 (2014).

    Google Scholar 

  60. 60.

    Chen, Z. et al. Graphene controlled Brewster angle device for ultra broadband terahertz modulation. Nat. Commun. 9, 4909 (2018).

    Google Scholar 

  61. 61.

    Mathematica v.12 (Wolfram, 2019).

  62. 62.

    Lumerical (Ansys, Inc., 2020).

  63. 63.

    Bermel, P. et al. Design and global optimization of high-efficiency thermophotovoltaic systems. Opt. Express 18, A314–A334 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank M. Mann and J. A. Fenster for their assistance in taking high-quality photos. We thank H. M. Cao for providing assistance in schematics. M.E. acknowledges fruitful discussions with K. Singer. C.G. acknowledges the support of the Army Research Office, the National Science Foundation and AlchLight. G.S. and M.H. acknowledge the support of the National Science Foundation.

Author information

Affiliations

Authors

Contributions

M.E., C.G., G.S. and M.H. discussed and defined the project. C.G., G.S. and M.H. supervised the research. M.E. developed the approach and initiated the project. T.L., S.A.J., C-H.F. and M.E. fabricated the samples. M.E., T.L., J.R., S.A.J. and N.H. performed the experiments. M.H. developed the coupled oscillator theory. M.E. and J.Z. performed FDTD simulations. M.E. wrote the manuscript with input from all the authors. All authors discussed the results.

Corresponding authors

Correspondence to Mohamed ElKabbash or Michael Hinczewski or Giuseppe Strangi or Chunlei Guo.

Ethics declarations

Competing interests

A patent application has been filed on the Fano resonance optical coating scheme in this work.

Additional information

Peer review information Nature Nanotechnology thanks Koray Aydin and Jiming Bao for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–17, Table 1 and equations (1)–(4) and refs. 1–12.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

ElKabbash, M., Letsou, T., Jalil, S.A. et al. Fano-resonant ultrathin film optical coatings. Nat. Nanotechnol. 16, 440–446 (2021). https://doi.org/10.1038/s41565-020-00841-9

Download citation

Search

Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research