Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4


The nonlinear Hall effect (NLHE), the phenomenon in which a transverse voltage can be produced without a magnetic field, provides a potential alternative for rectification or frequency doubling1,2. However, the low-temperature detection of the NLHE limits its applications3,4. Here, we report the room-temperature NLHE in a type-II Weyl semimetal TaIrTe4, which hosts a robust NLHE due to broken inversion symmetry and large band overlapping at the Fermi level. We also observe a temperature-induced sign inversion of the NLHE in TaIrTe4. Our theoretical calculations suggest that the observed sign inversion is a result of a temperature-induced shift in the chemical potential, indicating a direct correlation of the NLHE with the electronic structure at the Fermi surface. Finally, on the basis of the observed room-temperature NLHE in TaIrTe4 we demonstrate the wireless radiofrequency (RF) rectification with zero external bias and magnetic field. This work opens a door to realizing room-temperature applications based on the NLHE in Weyl semimetals.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Nonlinear Hall effect in a 20-nm-thick Hall bar device of TaIrTe4.
Fig. 2: Sign change of nonlinear Hall voltage due to the shift of chemical potential.
Fig. 3: Thickness-dependent nonlinear Hall signal.
Fig. 4: Rectification demonstration based on the nonlinear Hall effect in TaIrTe4.

Data availability

The data supporting the findings of this study are available within the paper.

Code availability

The codes that support this study are available from the corresponding author upon reasonable request.


  1. 1.

    Sodemann, I. & Fu, L. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    Article  Google Scholar 

  2. 2.

    Isobe, H., Xu, S. Y. & Fu, L. High-frequency rectification via chiral Bloch electrons. Sci. Adv. 6, eaay2497 (2020).

    CAS  Article  Google Scholar 

  3. 3.

    Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    CAS  Article  Google Scholar 

  6. 6.

    Du, Z. Z., Wang, C. M., Lu, H.-Z. & Xie, X. C. Band signatures for strong nonlinear Hall effect in bilayer WTe2. Phys. Rev. Lett. 121, 266601 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Article  Google Scholar 

  8. 8.

    Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Pacchioni, G. The Hall effect goes nonlinear. Nat. Rev. Mater. 4, 514 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Avci, C. O. et al. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers. Nat. Phys. 11, 570–575 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Ideue, T. et al. Bulk rectification effect in a polar semiconductor. Nat. Phys. 13, 578–583 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Low, T., Jiang, Y. & Guinea, F. Topological currents in black phosphorus with broken inversion symmetry. Phys. Rev. B 92, 235447 (2015).

    Article  Google Scholar 

  14. 14.

    Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    You, J.-S., Fang, S., Xu, S.-Y., Kaxiras, E. & Low, T. Berry curvature dipole current in the transition metal dichalcogenides family. Phys. Rev. B 98, 121109 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, Y., Sun, Y. & Yan, B. Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018).

    CAS  Article  Google Scholar 

  17. 17.

    Sipe, J. E. & Shkrebtii, A. I. Second-order optical response in semiconductors. Phys. Rev. B 61, 5337–5352 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Moore, J. E. & Orenstein, J. Confinement-induced Berry phase and helicity-dependent photocurrents. Phys. Rev. Lett. 105, 026805 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Morimoto, T. & Nagaosa, N. Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, e1501524 (2016).

    Article  Google Scholar 

  20. 20.

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Article  Google Scholar 

  21. 21.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Ma, J. et al. Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Wu, Y. et al. Temperature-induced Lifshitz transition in WTe2. Phys. Rev. Lett. 115, 166602 (2015).

    Article  Google Scholar 

  24. 24.

    Koepernik, K. et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys. Rev. B 93, 201101 (2016).

    Article  Google Scholar 

  25. 25.

    Haubold, E. et al. Experimental realization of type-II Weyl state in noncentrosymmetric TaIrTe4. Phys. Rev. B 95, 241108 (2017).

    Article  Google Scholar 

  26. 26.

    Belopolski, I. et al. Signatures of a time-reversal symmetric Weyl semimetal with only four Weyl points. Nat. Commun. 8, 942 (2017).

    Article  Google Scholar 

  27. 27.

    Liu, Y. et al. Raman signatures of broken inversion symmetry and in‐plane anisotropy in type‐II Weyl semimetal candidate TaIrTe4. Adv. Mater. 30, 1706402 (2018).

    Article  Google Scholar 

  28. 28.

    Mar, A., Jobic, S. & Ibers, J. A. Metal–metal vs tellurium–tellurium bonding in WTe2 and its ternary variants TaIrTe4 and NbIrTe4. J. Am. Chem. Soc. 114, 8963–8971 (1992).

    CAS  Article  Google Scholar 

  29. 29.

    He, P. et al. Nonlinear magnetotransport shaped by Fermi surface topology and convexity. Nat. Commun. 10, 1290 (2019).

    Article  Google Scholar 

  30. 30.

    Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Lai, J. et al. Broadband anisotropic photoresponse of the “hydrogen atom” version type-II Weyl semimetal candidate TaIrTe4. ACS Nano 12, 4055–4061 (2018).

    CAS  Article  Google Scholar 

Download references


This research was supported by the SpOT-LITE programme (A*STAR grant no. 18A6b0057) through RIE2020 funds from Singapore and Singapore Ministry of Education AcRF Tier 1 (R-263-000-D61-114). P.Y. was supported by the ‘100 Top Talents Program’ of Sun Yat-sen University (no. 29000-18841216) and the ‘Young-teacher Training Program’ of Sun Yat-sen University (no. 29000-31610036). C.-H.H. and G.L. were supported by MOE-AcRF Tier-II: MOE2017-T2-1-114. G.E. acknowledges support from the Ministry of Education (MOE), Singapore, under AcRF Tier 2 (MOE2017-T2-1-134). T.-R.C. was supported by MOST109-2636-M-006-002 and MOST107-2627-E-006-001, National Cheng Kung University, Taiwan, and the National Center for Theoretical Sciences, Taiwan.

Author information




D.K. designed the experimental study, fabricated devices and performed electrical measurements. C.-H.H. and G.L. did simulations and theoretical analyses. R.S. helped in energy-harvesting experiments. T.-R.C. provided the tight-binding models. P.Y. provided single crystals of TaIrTe4. J.W. and G.E. conducted Raman measurements. All authors discussed the results and commented on the manuscript. D.K., C.-H.H. and H.Y. wrote the manuscript. H.Y. initiated the idea and led the project.

Corresponding author

Correspondence to Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Hai-Zhou Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13, Figs. 1–10, Table 1 and refs. 1–21.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Hsu, CH., Sharma, R. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

Download citation


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research