Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Considerations for designing preclinical cancer immune nanomedicine studies

Abstract

Immunotherapy is known to be clinically beneficial for cancer patients and in many cases represents the new standard of care. Because of this success, the interest in integrating nanomedicine with cancer immunotherapy to further improve clinical response and toxicity profiles has grown. However, unlike conventional systemic therapies, which are directly cytotoxic to tumour cells, cancer immunotherapy relies on the host’s immune system to generate tumouricidal effects. As such, proper design of cancer immune nanomedicine requires scrutiny of tumours’ intrinsic and extrinsic factors that may impact host antitumour immunity. Here, we highlight key parameters that differentiate cancer immunotherapy from conventional cytotoxic agents, and we discuss their implications for designing preclinical cancer immune nanomedicine studies. We emphasize that these factors, including intratumoural genomic heterogeneity, commensal diversity, sexual dimorphism and biological ageing, which were largely ignored in traditional cancer nanomedicine experiments, should be carefully considered and incorporated into cancer immune nanomedicine investigations given their critical involvement in shaping the body’s antitumour immune responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Increasing number of publications and total citations of cancer immune nanomedicine studies over the years.
Fig. 2: Gut microbiota influences responses and toxicities of cancer immunotherapy.
Fig. 3: Age-related changes in the immune system.
Fig. 4: Toxicity and treatment response profiles of cancer-immune and cytotoxic therapies.

Similar content being viewed by others

References

  1. Sharma, P. & Allison, J. P. The future of immune checkpoint therapy. Science 348, 56–61 (2015).

    Article  CAS  Google Scholar 

  2. Nam, J. et al. Cancer nanomedicine for combination cancer immunotherapy. Nat. Rev. Mater. 4, 398–414 (2019).

    Article  Google Scholar 

  3. Weiss, S. A., Wolchok, J. D. & Sznol, M. Immunotherapy of melanoma: facts and hopes. Clin. Cancer Res. 25, 5191–5201 (2019).

    Article  CAS  Google Scholar 

  4. Peters, S., Reck, M., Smit, E. F., Mok, T. & Hellmann, M. D. How to make the best use of immunotherapy as first-line treatment of advanced/metastatic non-small-cell lung cancer. Ann. Oncol. 30, 884–896 (2019).

    Article  CAS  Google Scholar 

  5. Haslam, A. & Prasad, V. Estimation of the percentage of US patients with cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Netw. Open 2, e192535 (2019).

    Article  Google Scholar 

  6. Jiang, W. et al. Designing nanomedicine for immuno-oncology. Nat. Biomed. Eng. 1, 0029 (2017).

    Article  CAS  Google Scholar 

  7. Riley, R. S., June, C. H., Langer, R. & Mitchell, M. J. Delivery technologies for cancer immunotherapy. Nat. Rev. Drug Discov. 18, 175–196 (2019).

    Article  CAS  Google Scholar 

  8. Lizotte, P. H. et al. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol. 11, 295–303 (2016).

    Article  CAS  Google Scholar 

  9. Shae, D. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 14, 269–278 (2019).

    Article  CAS  Google Scholar 

  10. Rodell, C. B. et al. TLR7/8-agonist-loaded nanoparticles promote the polarization of tumour-associated macrophages to enhance cancer immunotherapy. Nat. Biomed. Eng. 2, 578–588 (2018).

    Article  CAS  Google Scholar 

  11. Fadel, T. R. et al. A carbon nanotube-polymer composite for T-cell therapy. Nat. Nanotechnol. 9, 639–647 (2014).

    Article  CAS  Google Scholar 

  12. Tang, L. et al. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 36, 707–716 (2018).

    Article  CAS  Google Scholar 

  13. Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016).

    Article  CAS  Google Scholar 

  14. Faria, M. et al. Minimum information reporting in bio-nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Article  CAS  Google Scholar 

  15. Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article  CAS  Google Scholar 

  16. Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat Nanotechnol 14, 629–635 (2019).

    Article  CAS  Google Scholar 

  17. Bergthaler, A. & Menche, J. The immune system as a social network. Nat. Immunol. 18, 481–482 (2017).

    Article  CAS  Google Scholar 

  18. Slagel, D. E., Feola, J., Houchens, D. P. & Ovejera, A. A. Combined modality treatment using radiation and/or chemotherapy in an athymic nude mouse-human medulloblastoma and glioblastoma xenograft model. Cancer. Res. 42, 812–816 (1982).

    CAS  Google Scholar 

  19. Galluzzi, L., Buque, A., Kepp, O., Zitvogel, L. & Kroemer, G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell 28, 690–714 (2015).

    Article  CAS  Google Scholar 

  20. Liu, J. et al. Radiation-related lymphopenia is associated with spleen irradiation dose during radiotherapy in patients with hepatocellular carcinoma. Radiat. Oncol. 12, 90 (2017).

    Article  CAS  Google Scholar 

  21. Ioannidis, J. P. A., Kim, B. Y. S. & Trounson, A. How to design preclinical studies in nanomedicine and cell therapy to maximize the prospects of clinical translation. Nat. Biomed. Eng. 2, 797–809 (2018).

    Article  CAS  Google Scholar 

  22. O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet. 18, 613–623 (2017).

    Article  CAS  Google Scholar 

  23. Brown, J. S., O’Carrigan, B., Jackson, S. P. & Yap, T. A. Targeting DNA repair in cancer: beyond PARP inhibitors. Cancer Discov. 7, 20–37 (2017).

    Article  CAS  Google Scholar 

  24. An, X. et al. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review. Leuk. Res. 34, 1255–1268 (2010).

    Article  CAS  Google Scholar 

  25. Hughes, T. P. et al. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N. Engl. J. Med. 349, 1423–1432 (2003).

    Article  CAS  Google Scholar 

  26. Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    Article  CAS  Google Scholar 

  27. Havel, J. J., Chowell, D. & Chan, T. A. The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat. Rev. Cancer. 19, 133–150 (2019).

    Article  CAS  Google Scholar 

  28. Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).

    Article  CAS  Google Scholar 

  29. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

    Article  Google Scholar 

  30. Chowell, D. et al. Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy. Science 359, 582–587 (2018). This study showed that increased diversity in the major histocompatibility complex (MHC) was associated with better survival in patients treated with immune checkpoint blockades, showing that the germline genetic diversity contributes to heterogeneous immunotherapy response.

    Article  CAS  Google Scholar 

  31. Luksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  CAS  Google Scholar 

  32. McGranahan, N. et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science 351, 1463–1469 (2016).

    Article  CAS  Google Scholar 

  33. Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).

    Article  CAS  Google Scholar 

  34. Rodig, S. J. et al. MHC proteins confer differential sensitivity to CTLA-4 and PD-1 blockade in untreated metastatic melanoma. Sci. Transl. Med. 10, eaar3342 (2018).

    Article  CAS  Google Scholar 

  35. Want, M. Y. et al. Neoantigens retention in patient derived xenograft models mediates autologous T cells activation in ovarian cancer. Oncoimmunology 8, e1586042 (2019).

    Article  Google Scholar 

  36. Kievit, F. M. et al. Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano 6, 2591–2601h (2012).

    Article  CAS  Google Scholar 

  37. Chung, W. J. et al. Kras mutant genetically engineered mouse models of human cancers are genomically heterogeneous. Proc. Natl Acad. Sci. USA 114, E10947–E10955 (2017).

    Article  CAS  Google Scholar 

  38. Chauhan, V. P. & Jain, R. K. Strategies for advancing cancer nanomedicine. Nat. Mater. 12, 958–962 (2013).

    Article  CAS  Google Scholar 

  39. Sivan, A. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350, 1084–1089 (2015).

    Article  CAS  Google Scholar 

  40. Gopalakrishnan, V. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359, 97–103 (2018). This study showed that the patients who responded to anti-PD-1 therapy had a different gut microbiome composition compared with non-responders, and that faecal transplants from responding patients can enhance antitumour immunity in germ-free mice.

    Article  CAS  Google Scholar 

  41. Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).

    Article  CAS  Google Scholar 

  42. Routy, B. et al. The gut microbiota influences anticancer immunosurveillance and general health. Nat. Rev. Clin. Oncol. 15, 382–396 (2018).

    Article  CAS  Google Scholar 

  43. Taur, Y. et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood 124, 1174–1182 (2014).

    Article  CAS  Google Scholar 

  44. Vetizou, M. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350, 1079–1084 (2015).

    Article  CAS  Google Scholar 

  45. Matson, V. et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science 359, 104–108 (2018).

    Article  CAS  Google Scholar 

  46. Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    Article  CAS  Google Scholar 

  47. Gharaibeh, R. Z. & Jobin, C. Microbiota and cancer immunotherapy: in search of microbial signals. Gut 68, 385–388 (2018).

    Article  CAS  Google Scholar 

  48. Geller, L. T. et al. Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science 357, 1156–1160 (2017).

    Article  CAS  Google Scholar 

  49. Riquelme, E. et al. Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell 178, 795–806 (2019).

    Article  CAS  Google Scholar 

  50. Liu, H. X. et al. Difference of lower airway microbiome in bilateral protected specimen brush between lung cancer patients with unilateral lobar masses and control subjects. Int. J. Cancer 142, 769–778 (2018).

    Article  CAS  Google Scholar 

  51. Ramirez-Labrada, A. G. et al. the influence of lung microbiota on lung carcinogenesis, immunity, and immunotherapy. Trends Cancer 6, 86–97 (2020).

    Article  CAS  Google Scholar 

  52. Nejman, D. et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science 368, 973–980 (2020).

    Article  CAS  Google Scholar 

  53. Dubin, K. et al. Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis. Nat. Commun. 7, 10391 (2016).

    Article  CAS  Google Scholar 

  54. Chaput, N. et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab. Ann. Oncol. 28, 1368–1379 (2017).

    Article  CAS  Google Scholar 

  55. McQuade, J. L., Daniel, C. R., Helmink, B. A. & Wargo, J. A. Modulating the microbiome to improve therapeutic response in cancer. Lancet Oncol. 20, e77–e91 (2019).

    Article  Google Scholar 

  56. Song, W. et al. Trapping of lipopolysaccharide to promote immunotherapy against colorectal cancer and attenuate liver metastasis. Adv. Mater. 30, e1805007 (2018).

    Article  CAS  Google Scholar 

  57. Lu, Z., Rong, K., Li, J., Yang, H. & Chen, R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. J. Mater. Sci. Mater. Med. 24, 1465–1471 (2013).

    Article  CAS  Google Scholar 

  58. Poh, T. Y. et al. Inhaled nanomaterials and the respiratory microbiome: clinical, immunological and toxicological perspectives. Part. Fibre Toxicol. 15, 46 (2018).

    Article  CAS  Google Scholar 

  59. Lee, Y. et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis. Nat. Mater. 19, 118–126 (2019).

    Article  CAS  Google Scholar 

  60. Reddy, S. T. et al. Exploiting lymphatic transport and complement activation in nanoparticle vaccines. Nat. Biotechnol. 25, 1159–1164 (2007).

    Article  CAS  Google Scholar 

  61. Wilson, D. S. et al. Orally delivered thioketal nanoparticles loaded with TNF-alpha-siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 9, 923–928 (2010).

    Article  CAS  Google Scholar 

  62. Javurek, A. B. et al. Gut dysbiosis and neurobehavioral alterations in rats exposed to silver nanoparticles. Sci Rep 7, 2822 (2017).

    Article  CAS  Google Scholar 

  63. Rosshart, S. P. et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science 365, eaaw4361 (2019).

    Article  CAS  Google Scholar 

  64. Edgren, G., Liang, L., Adami, H. O. & Chang, E. T. Enigmatic sex disparities in cancer incidence. Eur. J. Epidemiol. 27, 187–196 (2012).

    Article  Google Scholar 

  65. Cook, M. B., McGlynn, K. A., Devesa, S. S., Freedman, N. D. & Anderson, W. F. Sex disparities in cancer mortality and survival. Cancer Epidemiol. Biomarkers Prev. 20, 1629–1637 (2011).

    Article  Google Scholar 

  66. Yang, W. et al. Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data. Sci. Transl. Med. 11 (2019).

  67. Conforti, F. et al. Cancer immunotherapy efficacy and patients’ sex: a systematic review and meta-analysis. Lancet Oncol. 19, 737–746 (2018). This meta-analysis of twenty randomized immunotherapy trials with over 11,000 patients found that immune checkpoint inhibitors were more effective in male than in female patients.

    Article  CAS  Google Scholar 

  68. Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016).

    Article  CAS  Google Scholar 

  69. Schneider-Hohendorf, T. et al. Sex bias in MHC I-associated shaping of the adaptive immune system. Proc. Natl Acad. Sci. USA 115, 2168–2173 (2018).

    Article  CAS  Google Scholar 

  70. Serpooshan, V. et al. Effect of cell sex on uptake of nanoparticles: the overlooked factor at the nanobio interface. ACS Nano 12, 2253–2266 (2018). This study showed male and female human amniotic stem cells had differences in nanoparticle uptake, suggesting the effect of sex should be considered as a factor at the nano–bio interface.

    Article  CAS  Google Scholar 

  71. La-Beck, N. M. et al. Factors affecting the pharmacokinetics of pegylated liposomal doxorubicin in patients. Cancer Chemother. Pharmacol. 69, 43–50 (2012).

    Article  CAS  Google Scholar 

  72. Lora-Cruz, C. et al. Gold nanoparticle uptake is enhanced by estradiol in MCF-7 breast cancer cells. Int. J. Nanomedicine 14, 2705–2718 (2019).

    Article  Google Scholar 

  73. Schmiedel, B. J. et al. Impact of genetic polymorphisms on human immune cell gene expression. Cell 175, 1701–1715 (2018).

    Article  CAS  Google Scholar 

  74. Clayton, J. A. Applying the new SABV (sex as a biological variable) policy to research and clinical care. Physiol. Behav. 187, 2–5 (2018).

    Article  CAS  Google Scholar 

  75. De La Rochere, P. et al. Humanized mice for the study of immuno-oncology. Trends Immunol. 39, 748–763 (2018).

    Article  CAS  Google Scholar 

  76. Nikolich-Zugich, J. The twilight of immunity: emerging concepts in aging of the immune system. Nat. Immunol. 19, 10–19 (2018).

    Article  CAS  Google Scholar 

  77. Kaur, A. et al. sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532, 250–254 (2016).

    Article  CAS  Google Scholar 

  78. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435 (2018).

    Article  CAS  Google Scholar 

  79. Sceneay, J. et al. Interferon signaling is diminished with age and is associated with immune checkpoint blockade efficacy in triple-negative breast cancer. Cancer Discov. 9, 1208–1227 (2019). This study showed that aged mice had a deficiency in innate immune response that causes resistance to immune checkpoint blockade.

    Article  CAS  Google Scholar 

  80. Saitoh, T. et al. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl Acad. Sci. USA 106, 20842–20846 (2009).

    Article  CAS  Google Scholar 

  81. Mitzel, D. N., Lowry, V., Shirali, A. C., Liu, Y. & Stout-Delgado, H. W. Age-enhanced endoplasmic reticulum stress contributes to increased Atg9A inhibition of STING-mediated IFN-beta production during Streptococcus pneumoniae infection. J. Immunol. 192, 4273–4283 (2014).

    Article  CAS  Google Scholar 

  82. Kugel, C. H. 3rd et al. age correlates with response to anti-PD1, reflecting age-related differences in intratumoral effector and regulatory T-cell populations. Clin. Cancer Res. 24, 5347–5356 (2018).

    Article  CAS  Google Scholar 

  83. Lichtenstein, M. R. L. et al. Impact of age on outcomes with immunotherapy in patients with non-small cell lung cancer. J. Thorac. Oncol. 14, 547–552 (2019).

    Article  CAS  Google Scholar 

  84. Zamboni, W. C. et al. Bidirectional pharmacodynamic interaction between pegylated liposomal CKD-602 (S-CKD602) and monocytes in patients with refractory solid tumors. J. Liposome Res. 21, 158–165 (2011).

    Article  CAS  Google Scholar 

  85. Dutta, S. & Sengupta, P. Men and mice: relating their ages. Life Sci. 152, 244–248 (2016).

    Article  CAS  Google Scholar 

  86. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 70, 7–30 (2020).

    Article  Google Scholar 

  87. Diaz Brinton, R. Minireview: translational animal models of human menopause: challenges and emerging opportunities. Endocrinology 153, 3571–3578 (2012).

    Article  CAS  Google Scholar 

  88. Scharf, A., Piechulek, A. & von Mikecz, A. Effect of nanoparticles on the biochemical and behavioral aging phenotype of the nematode Caenorhabditis elegans. ACS Nano 7, 10695–10703 (2013).

    Article  CAS  Google Scholar 

  89. Kurz, C. L. & Tan, M. W. Regulation of aging and innate immunity in C. elegans. Aging Cell 3, 185–193 (2004).

    Article  CAS  Google Scholar 

  90. Garcia-Gonzalez, A. P. et al. Bacterial metabolism affects the C. elegans response to cancer chemotherapeutics. Cell 169, 431–441 (2017).

    Article  CAS  Google Scholar 

  91. Brandt, J. P. & Ringstad, N. Toll-like receptor signaling promotes development and function of sensory neurons required for a C. elegans pathogen-avoidance behavior. Curr. Biol. 25, 2228–2237 (2015).

    Article  CAS  Google Scholar 

  92. Mitchell, S. J., Scheibye-Knudsen, M., Longo, D. L. & de Cabo, R. Animal models of aging research: implications for human aging and age-related diseases. Annu. Rev. Anim. Biosci. 3, 283–303 (2015).

    Article  CAS  Google Scholar 

  93. Wolchok, J. D. et al. Guidelines for the evaluation of immune therapy activity in solid tumors: immune-related response criteria. Clin. Cancer Res. 15, 7412–7420 (2009).

    Article  CAS  Google Scholar 

  94. Ferrara, R. & Matos, I. Atypical patterns of response and progression in the era of immunotherapy combinations. Future Oncol. 16, 1707–1713 (2020).

    CAS  Google Scholar 

  95. Ferrara, R., Caramella, C., Besse, B. & Champiat, S. pseudoprogression in non-small cell lung cancer upon immunotherapy: few drops in the ocean? J. Thorac. Oncol. 14, 328–331 (2019).

    Article  Google Scholar 

  96. Wang, Q., Gao, J. & Wu, X. Pseudoprogression and hyperprogression after checkpoint blockade. Int. Immunopharmacol. 58, 125–135 (2018).

    Article  CAS  Google Scholar 

  97. Tetzlaff, M. T. et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann Oncol 29, 1861–1868 (2018).

    Article  CAS  Google Scholar 

  98. June, C. H., Warshauer, J. T. & Bluestone, J. A. Is autoimmunity the Achilles’ heel of cancer immunotherapy? Nat. Med. 23, 540–547 (2017).

    Article  CAS  Google Scholar 

  99. Norelli, M. et al. Monocyte-derived IL-1 and IL-6 are differentially required for cytokine-release syndrome and neurotoxicity due to CAR T cells. Nat. Med. 24, 739–748 (2018).

    Article  CAS  Google Scholar 

  100. Giavridis, T. et al. CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat. Med. 24, 731–738 (2018).

    Article  CAS  Google Scholar 

  101. Malysheva, A., Lombi, E. & Voelcker, N. H. Bridging the divide between human and environmental nanotoxicology. Nat. Nanotechnol. 10, 835–844 (2015).

    Article  CAS  Google Scholar 

  102. Dobrovolskaia, M. A., Germolec, D. R. & Weaver, J. L. Evaluation of nanoparticle immunotoxicity. Nat. Nanotechnol. 4, 411–414 (2009).

    Article  CAS  Google Scholar 

  103. Hauck, T. S., Anderson, R. E., Fischer, H. C., Newbigging, S. & Chan, W. C. In vivo quantum-dot toxicity assessment. Small 6, 138–144 (2010).

    Article  CAS  Google Scholar 

  104. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    Article  CAS  Google Scholar 

  105. Amos, S. M. et al. Autoimmunity associated with immunotherapy of cancer. Blood 118, 499–509 (2011).

    Article  CAS  Google Scholar 

  106. Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019). This is a comprehensive review of immune-related adverse events associated with different immune checkpoint blockades in different organs.

    Article  CAS  Google Scholar 

  107. Weber, J. S., Kahler, K. C. & Hauschild, A. Management of immune-related adverse events and kinetics of response with ipilimumab. J. Clin. Oncol. 30, 2691–2697 (2012).

    Article  CAS  Google Scholar 

  108. Byun, D. J., Wolchok, J. D., Rosenberg, L. M. & Girotra, M. Cancer immunotherapy - immune checkpoint blockade and associated endocrinopathies. Nat. Rev. Endocrinol. 13, 195–207 (2017).

    Article  CAS  Google Scholar 

  109. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  Google Scholar 

  110. Nishino, M., Sholl, L. M., Hodi, F. S., Hatabu, H. & Ramaiya, N. H. Anti-PD-1-Related Pneumonitis during Cancer Immunotherapy. N. Engl. J. Med. 373, 288–290 (2015).

    Article  CAS  Google Scholar 

  111. Liu, J., Blake, S. J., Smyth, M. J. & Teng, M. W. Improved mouse models to assess tumour immunity and irAEs after combination cancer immunotherapies. Clin. Transl. Immunology 3, e22, https://doi.org/10.1038/cti.2014.18 (2014).

    Article  CAS  Google Scholar 

  112. Gu, L. et al. The safety and tolerability of combined immune checkpoint inhibitors (anti-PD-1/PD-L1 plus anti-CTLA-4): a systematic review and meta-analysis. BMC Cancer 19, 559, https://doi.org/10.1186/s12885-019-5785-z (2019).

    Article  CAS  Google Scholar 

  113. Chiang, C. S. et al. Combination of fucoidan-based magnetic nanoparticles and immunomodulators enhances tumour-localized immunotherapy. Nat. Nanotechnol. 13, 746–754 (2018).

    Article  CAS  Google Scholar 

  114. Chen, Q. et al. In situ sprayed bioresponsive immunotherapeutic gel for post-surgical cancer treatment. Nat. Nanotechnol. 14, 89–97 (2019).

    Article  CAS  Google Scholar 

  115. Kuai, R., Ochyl, L. J., Bahjat, K. S., Schwendeman, A. & Moon, J. J. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat. Mater. 16, 489–496 (2017).

    Article  CAS  Google Scholar 

  116. Luo, M. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 12, 648–654 (2017).

    Article  CAS  Google Scholar 

  117. Yuan, H. et al. Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 12, 763–769 (2017).

    Article  CAS  Google Scholar 

  118. Chen, Q. et al. Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nat. Commun. 7, 13193 (2016).

    Article  CAS  Google Scholar 

  119. Lu, K. et al. Low-dose X-ray radiotherapy–radiodynamic therapy via nanoscale metal–organic frameworks enhances checkpoint blockade immunotherapy. Nat. Biomed. Eng. 2, 600–610 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Cancer Prevention and Research Institute of Texas (grant RR180017) (W.J.), the National Cancer Institute (grant K08CA241070) (W.J.), the Susan G. Komen Foundation (grant CCR19605871) (W.J.), the American Brain Tumor Association (grant DG1900021) (W.J.), the National Institute of Neurological Disorders and Stroke (grant R01 NS104315) (B.Y.S.K.) and the Department of Defense (grant W81XWH-19-1-0325) (B.Y.S.K.). The authors would like to thank Dr Damiana Chiavolini from the Department of Radiation Oncology at UT Southwestern Medical Center for editorial help with the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wen Jiang or Betty Y. S. Kim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks James Moon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, W., Wang, Y., Wargo, J.A. et al. Considerations for designing preclinical cancer immune nanomedicine studies. Nat. Nanotechnol. 16, 6–15 (2021). https://doi.org/10.1038/s41565-020-00817-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41565-020-00817-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research