Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mechanochemistry for ammonia synthesis under mild conditions


Ammonia, one of the most important synthetic feedstocks, is mainly produced by the Haber–Bosch process at 400–500 °C and above 100 bar. The process cannot be performed under ambient conditions for kinetic reasons. Here, we demonstrate that ammonia can be synthesized at 45 °C and 1 bar via a mechanochemical method using an iron-based catalyst. With this process the ammonia final concentration reached 82.5 vol%, which is higher than state-of-the-art ammonia synthesis under high temperature and pressure (25 vol%, 450 °C, 200 bar). The mechanochemically induced high defect density and violent impact on the iron catalyst were responsible for the mild synthesis conditions.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic illustration of the ammonia synthesis process.
Fig. 2: Reaction kinetics of nitrogen dissociation and ammonia yield.
Fig. 3: Characterization of the iron catalyst.
Fig. 4: Theoretical analysis of the hydrogenation process.

Data availability

The data that support the findings of this study are presented in the main text and the Supplementary Information, and are available from the corresponding author upon reasonable request.


  1. 1.

    Chen, J. G. et al. Beyond fossil fuel–driven nitrogen transformations. Science 360, eaar6611 (2018).

    Google Scholar 

  2. 2.

    Mineral Commodity Summaries 2019 (US Geological Survey, 2019);

  3. 3.

    Myers, R. L. The 100 Most Important Chemical Compounds: a Reference Guide (Greenwood Press, 2007).

  4. 4.

    Appl, M. Ammonia: Principles and Industrial Practice (Wiley-VCH Verlag GmbH, 1999).

  5. 5.

    Gong, Y. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat. Catal. 1, 178–185 (2018).

    CAS  Google Scholar 

  6. 6.

    Foster, S. L. et al. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 1, 490–500 (2018).

    Google Scholar 

  7. 7.

    Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron-potassium complex. Science 334, 780–783 (2011).

    CAS  Google Scholar 

  8. 8.

    Marnellos, G. & Stoukides, M. Ammonia synthesis at atmospheric pressure. Science 282, 98–100 (1998).

    CAS  Google Scholar 

  9. 9.

    Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    CAS  Google Scholar 

  10. 10.

    Mehta, P. et al. Overcoming ammonia synthesis scaling relations with plasma-enabled catalysis. Nat. Catal. 1, 269–275 (2018).

    Google Scholar 

  11. 11.

    Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).

    CAS  Google Scholar 

  12. 12.

    Licht, S. et al. Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 345, 637–640 (2014). retraction 369, 780 (2020).

    CAS  Google Scholar 

  13. 13.

    Gao, W. et al. Production of ammonia via a chemical looping process based on metal imides as nitrogen carriers. Nat. Energy 3, 1067–1075 (2018).

    CAS  Google Scholar 

  14. 14.

    Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    CAS  Google Scholar 

  15. 15.

    Logadottir, A. et al. The Brønsted–Evans–Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts. J. Catal. 197, 229–231 (2001).

    CAS  Google Scholar 

  16. 16.

    Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    CAS  Google Scholar 

  17. 17.

    Khorshidi, A., Violet, J., Hashemi, J. & Peterson, A. A. How strain can break the scaling relations of catalysis. Nat. Catal. 1, 263–268 (2018).

    Google Scholar 

  18. 18.

    Michalsky, R., Avram, A. M., Peterson, B. A., Pfromm, P. H. & Peterson, A. A. Chemical looping of metal nitride catalysts: low-pressure ammonia synthesis for energy storage. Chem. Sci. 6, 3965–3974 (2015).

    CAS  Google Scholar 

  19. 19.

    Wilk, B., Pelka, R. & Arabczyk, W. Study of the iron catalyst for ammonia synthesis by chemical potential programmed reaction method. J. Phys. Chem. C. 121, 8548–8556 (2017).

    CAS  Google Scholar 

  20. 20.

    Swearer, D. F., Knowles, N. R., Everitt, H. O. & Halas, N. J. Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. 4, 1505–1512 (2019).

    CAS  Google Scholar 

  21. 21.

    James, S. L. et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012).

    CAS  Google Scholar 

  22. 22.

    Baláž, P. Mechanochemistry in Nanoscience and Minerals Engineering (Springer-Verlag, 2008).

  23. 23.

    Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001).

    CAS  Google Scholar 

  24. 24.

    Suzuki, T. S. & Nagumo, M. Metastable intermediate phase formation at reaction milling of titanium and n-heptane. Scr. Metall. Mater. 32, 1215–1220 (1995).

    CAS  Google Scholar 

  25. 25.

    Andersen, S. Z. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019).

    CAS  Google Scholar 

  26. 26.

    Lazouski, N., Chung, M., Williams, K., Gala, M. L. & Manthiram, K. Non-aqueous gas diffusion electrodes for rapid ammonia synthesis from nitrogen and water-splitting-derived hydrogen. Nat. Catal. 3, 463–469 (2020).

    CAS  Google Scholar 

  27. 27.

    Ampelli, C. Electrode design for ammonia synthesis. Nat. Catal. 3, 420–421 (2020).

    CAS  Google Scholar 

  28. 28.

    McEnaney, J. M. et al. Ammonia synthesis from N2 and H2O using a lithium cycling electrification strategy at atmospheric pressure. Energy Environ. Sci. 10, 1621–1630 (2017).

    CAS  Google Scholar 

  29. 29.

    Schiffer, Z. J. & Manthiram, K. Electrification and decarbonization of the chemical industry. Joule 1, 10–14 (2017).

    Google Scholar 

  30. 30.

    Hao, Y.-C. et al. Promoting nitrogen electroreduction to ammonia with bismuth nanocrystals and potassium cations in water. Nat. Catal. 2, 448–456 (2019).

    CAS  Google Scholar 

  31. 31.

    Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    CAS  Google Scholar 

  32. 32.

    Ertl, G. Surface science and catalysis—studies on the mechanism of ammonia synthesis: the P. H. Emmett Award address. Catal. Rev. 21, 201–223 (1980).

    CAS  Google Scholar 

  33. 33.

    Ertl, G. in Catalytic Ammonia Synthesis (ed. Jennings, J. R.) Ch. 3 (Springer, 1991).

  34. 34.

    Ye, T.-N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    CAS  Google Scholar 

  35. 35.

    Moriya, T., Sumitomo, Y., Ino, H., Fujita, F. E. & Maeda, Y. Mössbauer effect in iron-nitrogen alloys and compounds. J. Phys. Soc. Jpn 35, 1378–1385 (1973).

    CAS  Google Scholar 

  36. 36.

    Torres, J., Perry, C. C., Bransfield, S. J. & Fairbrother, D. H. Low-temperature oxidation of nitrided iron surfaces. J. Phys. Chem. B 107, 5558–5567 (2003).

    CAS  Google Scholar 

  37. 37.

    Rao, C. N. R. & Rao, G. R. Nature of nitrogen adsorbed on transition metal surfaces as revealed by electron spectroscopy and cognate techniques. Surf. Sci. Rep. 13, 223–263 (1991).

    Google Scholar 

  38. 38.

    Chen, J. G. NEXAFS investigations of transition metal oxides, nitrides, carbides, sulfides and other interstitial compounds. Surf. Sci. Rep. 30, 1–152 (1997).

    CAS  Google Scholar 

  39. 39.

    Mårtensson, N. et al. On the relation between X-ray photoelectron spectroscopy and XAFS. J. Phys. Conf. Ser. 430, 012131 (2013).

    Google Scholar 

  40. 40.

    Tong, W. P., Tao, N. R., Wang, Z. B., Lu, J. & Lu, K. Nitriding iron at lower temperatures. Science 299, 686–688 (2003).

    CAS  Google Scholar 

  41. 41.

    Haynes, W. M. (ed.) CRC Handbook of Chemistry and Physics (CRC Press, 2016).

  42. 42.

    Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Google Scholar 

  43. 43.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  44. 44.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  46. 46.

    Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    CAS  Google Scholar 

  47. 47.

    Han, G.-F. et al. Dissociating stable nitrogen molecules under mild conditions by cyclic strain engineering. Sci. Adv. 5, eaax8275 (2019).

    CAS  Google Scholar 

Download references


We are grateful for the use of the Pohang Accelerator Laboratory (6D UNIST-PAL beamline, South Korea) and the Mössbauer Effect Data Center (DICP, China). This work was supported by the Creative Research Initiative (CRI, 2014R1A3A2069102) and the Science Research Center (SRC, 2016R1A5A1009405) programmes through the National Research Foundation (NRF) of Korea, the U-K Brand Project (1.200096.01) of UNIST, and the National Natural Science Foundation of China (no. 51631004). S.S. acknowledges support from the University of Calgary’s Canada First Research Excellence Fund programme, the Global Research Initiative in Sustainable Low Carbon Unconventional Resources.

Author information




J.-B.B. conceived the project and oversaw all the research phases. J.-B.B. and G.-F.H. designed the project. H.-J.N. conducted the HRTEM experiments. F.L., Z.F. and Y.L. carried out the soft XANES measurements. S.-J.K. performed the GC measurements. J.-B.B., Q.J. and G.-F.H. conceived the theoretical model. Q.J., S.S., Z.-W.C., C.V.S. and C.C. conducted the theoretical calculations. Data collection and analysis were conducted by J.-B.B. and G.-F.H. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Zhi-Wen Chen, Samira Siahrostami, Qing Jiang or Jong-Beom Baek.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Nanotechnology thanks Viktor Colic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, Figs. 1–16, Tables 1–3 and refs. 1–4.

Supplementary Video 1

Video showing a typical ammonia preparation process via mechanochemistry.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, GF., Li, F., Chen, ZW. et al. Mechanochemistry for ammonia synthesis under mild conditions. Nat. Nanotechnol. 16, 325–330 (2021).

Download citation

Further reading


Quick links

Find nanotechnology articles, nanomaterial data and patents all in one place. Visit Nano by Nature Research